{"title":"基于帧的平衡正则化压缩感知MR图像重建。","authors":"Shoulie Xie, Cuntai Guan, Weimin Huang, Zhongkang Lu","doi":"10.1109/EMBC.2015.7320011","DOIUrl":null,"url":null,"abstract":"This paper addresses the frame-based MR image reconstruction from undersampled k-space measurements by using a balanced ℓ(1)-regularized approach. Analysis-based and synthesis-based approaches are two common methods in ℓ(1)-regularized image restoration. They are equivalent under the orthogonal transform, but there exists a gap between them under redundant transform such as frame. Thus the third approach was developed to reduce the gap by penalizing the distance between the representation vector and the canonical frame coefficient of the estimated image, this balanced approach bridges the synthesis-based and analysis-based approaches and balances the fidelity, sparsity and smoothness of the solution. These frame-based approaches have been studied and compared for optical image restoration over the last few years. In this paper, we further study and compare these three approaches for the compressed sensing MR image reconstruction under redundant frame domain. These ℓ(1)-regularized optimization problems are solved by using a variable splitting strategy and the classical alternating direction method of multiplier (ADMM). Numerical simulation results show that the balanced approach can reduce the gap between the analysis-based and synthesis-based approaches and are even better than these two approaches under our experimental conditions.","PeriodicalId":72689,"journal":{"name":"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference","volume":"1993 1","pages":"7031-4"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frame-based compressive sensing MR image reconstruction with balanced regularization.\",\"authors\":\"Shoulie Xie, Cuntai Guan, Weimin Huang, Zhongkang Lu\",\"doi\":\"10.1109/EMBC.2015.7320011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the frame-based MR image reconstruction from undersampled k-space measurements by using a balanced ℓ(1)-regularized approach. Analysis-based and synthesis-based approaches are two common methods in ℓ(1)-regularized image restoration. They are equivalent under the orthogonal transform, but there exists a gap between them under redundant transform such as frame. Thus the third approach was developed to reduce the gap by penalizing the distance between the representation vector and the canonical frame coefficient of the estimated image, this balanced approach bridges the synthesis-based and analysis-based approaches and balances the fidelity, sparsity and smoothness of the solution. These frame-based approaches have been studied and compared for optical image restoration over the last few years. In this paper, we further study and compare these three approaches for the compressed sensing MR image reconstruction under redundant frame domain. These ℓ(1)-regularized optimization problems are solved by using a variable splitting strategy and the classical alternating direction method of multiplier (ADMM). Numerical simulation results show that the balanced approach can reduce the gap between the analysis-based and synthesis-based approaches and are even better than these two approaches under our experimental conditions.\",\"PeriodicalId\":72689,\"journal\":{\"name\":\"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference\",\"volume\":\"1993 1\",\"pages\":\"7031-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMBC.2015.7320011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC.2015.7320011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用平衡的正则化方法从欠采样的k空间测量中处理基于帧的MR图像重建。基于分析和基于综合的方法是正则化图像恢复中常用的两种方法。它们在正交变换下是等价的,但在帧等冗余变换下却存在差距。因此,第三种方法被开发出来,通过惩罚估计图像的表示向量和规范帧系数之间的距离来减少差距,这种平衡的方法连接了基于合成和基于分析的方法,并平衡了解决方案的保真度,稀疏性和平滑性。在过去的几年里,人们对这些基于帧的方法进行了研究和比较。在本文中,我们进一步研究和比较了这三种方法在冗余帧域下的压缩感知MR图像重建。利用变量分裂策略和经典的乘法器交替方向法(ADMM)解决了这些正则化优化问题。数值模拟结果表明,在我们的实验条件下,平衡方法可以缩小基于分析和基于综合的方法之间的差距,甚至优于基于分析和基于综合的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Frame-based compressive sensing MR image reconstruction with balanced regularization.
This paper addresses the frame-based MR image reconstruction from undersampled k-space measurements by using a balanced ℓ(1)-regularized approach. Analysis-based and synthesis-based approaches are two common methods in ℓ(1)-regularized image restoration. They are equivalent under the orthogonal transform, but there exists a gap between them under redundant transform such as frame. Thus the third approach was developed to reduce the gap by penalizing the distance between the representation vector and the canonical frame coefficient of the estimated image, this balanced approach bridges the synthesis-based and analysis-based approaches and balances the fidelity, sparsity and smoothness of the solution. These frame-based approaches have been studied and compared for optical image restoration over the last few years. In this paper, we further study and compare these three approaches for the compressed sensing MR image reconstruction under redundant frame domain. These ℓ(1)-regularized optimization problems are solved by using a variable splitting strategy and the classical alternating direction method of multiplier (ADMM). Numerical simulation results show that the balanced approach can reduce the gap between the analysis-based and synthesis-based approaches and are even better than these two approaches under our experimental conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
期刊最新文献
Rapid Label-free DNA Quantification by Multi-frequency Impedance Sensing on a Chip. A Comparison of 1-D and 2-D Deep Convolutional Neural Networks in ECG Classification Brain Morphometry Analysis with Surface Foliation Theory Low-Cost, USB Connected and Multi-Purpose Biopotential Recording System. A Fast Respiratory Rate Estimation Method using Joint Sparse Signal Reconstruction based on Regularized Sparsity Adaptive Matching Pursuit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1