Yuanyuan Zhang, Xiaoqing Sun, Junshuai Chai, Hao Xu, Xueli Ma, J. Xiang, Kai Han, Xiaolei Wang, Wenwu Wang
{"title":"铁电电容器瞬态负电容的热力学驱动力","authors":"Yuanyuan Zhang, Xiaoqing Sun, Junshuai Chai, Hao Xu, Xueli Ma, J. Xiang, Kai Han, Xiaolei Wang, Wenwu Wang","doi":"10.1063/5.0039246","DOIUrl":null,"url":null,"abstract":"This paper investigates the thermodynamic driving force of transient negative capacitance (NC) in the series circuit of the resistor and ferroelectric capacitor (R-FEC). We find that the widely used Landau-Khalatnikov (L-K) theory, that is, the minimum of the Gibbs free energy, is inapplicable to explain the transient NC. The thermodynamic driving force of the transient NC phenomenon is the minimum of the difference between the elastic Gibbs free energy and the electric polarization work. The appearance of the transient NC phenomenon is not due to the widely accepted view that the ferroelectric polarization goes through the negative curvature region of elastic Gibbs free energy landscape (Ga). Instead, the transient NC phenomenon appears when the energy barrier of Ga disappears. The transient NC is dependent on both the intrinsic ferroelectric material parameters and extrinsic factors in the R-FEC circuit.","PeriodicalId":8423,"journal":{"name":"arXiv: Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Thermodynamic driving force of transient negative capacitance of ferroelectric capacitors\",\"authors\":\"Yuanyuan Zhang, Xiaoqing Sun, Junshuai Chai, Hao Xu, Xueli Ma, J. Xiang, Kai Han, Xiaolei Wang, Wenwu Wang\",\"doi\":\"10.1063/5.0039246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the thermodynamic driving force of transient negative capacitance (NC) in the series circuit of the resistor and ferroelectric capacitor (R-FEC). We find that the widely used Landau-Khalatnikov (L-K) theory, that is, the minimum of the Gibbs free energy, is inapplicable to explain the transient NC. The thermodynamic driving force of the transient NC phenomenon is the minimum of the difference between the elastic Gibbs free energy and the electric polarization work. The appearance of the transient NC phenomenon is not due to the widely accepted view that the ferroelectric polarization goes through the negative curvature region of elastic Gibbs free energy landscape (Ga). Instead, the transient NC phenomenon appears when the energy barrier of Ga disappears. The transient NC is dependent on both the intrinsic ferroelectric material parameters and extrinsic factors in the R-FEC circuit.\",\"PeriodicalId\":8423,\"journal\":{\"name\":\"arXiv: Applied Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0039246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0039246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermodynamic driving force of transient negative capacitance of ferroelectric capacitors
This paper investigates the thermodynamic driving force of transient negative capacitance (NC) in the series circuit of the resistor and ferroelectric capacitor (R-FEC). We find that the widely used Landau-Khalatnikov (L-K) theory, that is, the minimum of the Gibbs free energy, is inapplicable to explain the transient NC. The thermodynamic driving force of the transient NC phenomenon is the minimum of the difference between the elastic Gibbs free energy and the electric polarization work. The appearance of the transient NC phenomenon is not due to the widely accepted view that the ferroelectric polarization goes through the negative curvature region of elastic Gibbs free energy landscape (Ga). Instead, the transient NC phenomenon appears when the energy barrier of Ga disappears. The transient NC is dependent on both the intrinsic ferroelectric material parameters and extrinsic factors in the R-FEC circuit.