面向物联网的多维数据集动态生成

Muntazir Mehdi, Ratnesh Sahay, Wassim Derguech, E. Curry
{"title":"面向物联网的多维数据集动态生成","authors":"Muntazir Mehdi, Ratnesh Sahay, Wassim Derguech, E. Curry","doi":"10.1145/2513591.2513655","DOIUrl":null,"url":null,"abstract":"The dynamicity of sensor data sources and publishing real-time sensor data over a generalised infrastructure like the Web pose a new set of integration challenges. Semantic Sensor Networks demand excessive expressivity for efficient formal analysis of sensor data. This article specifically addresses the problem of adapting data model specific or context-specific properties in automatic generation of multidimensional data cubes. The idea is to generate data cubes on-the-fly from syntactic sensor data to sustain decision making, event processing and to publish this data as Linked Open Data.","PeriodicalId":93615,"journal":{"name":"Proceedings. International Database Engineering and Applications Symposium","volume":"1 1","pages":"28-37"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"On-the-fly generation of multidimensional data cubes for web of things\",\"authors\":\"Muntazir Mehdi, Ratnesh Sahay, Wassim Derguech, E. Curry\",\"doi\":\"10.1145/2513591.2513655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamicity of sensor data sources and publishing real-time sensor data over a generalised infrastructure like the Web pose a new set of integration challenges. Semantic Sensor Networks demand excessive expressivity for efficient formal analysis of sensor data. This article specifically addresses the problem of adapting data model specific or context-specific properties in automatic generation of multidimensional data cubes. The idea is to generate data cubes on-the-fly from syntactic sensor data to sustain decision making, event processing and to publish this data as Linked Open Data.\",\"PeriodicalId\":93615,\"journal\":{\"name\":\"Proceedings. International Database Engineering and Applications Symposium\",\"volume\":\"1 1\",\"pages\":\"28-37\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Database Engineering and Applications Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2513591.2513655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Database Engineering and Applications Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2513591.2513655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

传感器数据源的动态性和在Web等通用基础设施上发布实时传感器数据带来了一系列新的集成挑战。语义传感器网络要求对传感器数据进行高效的形式化分析。本文专门讨论在自动生成多维数据集时如何调整特定于数据模型或特定于上下文的属性。这个想法是从语法传感器数据动态生成数据立方体,以支持决策制定、事件处理,并将这些数据作为链接开放数据发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On-the-fly generation of multidimensional data cubes for web of things
The dynamicity of sensor data sources and publishing real-time sensor data over a generalised infrastructure like the Web pose a new set of integration challenges. Semantic Sensor Networks demand excessive expressivity for efficient formal analysis of sensor data. This article specifically addresses the problem of adapting data model specific or context-specific properties in automatic generation of multidimensional data cubes. The idea is to generate data cubes on-the-fly from syntactic sensor data to sustain decision making, event processing and to publish this data as Linked Open Data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A method combining improved Mahalanobis distance and adversarial autoencoder to detect abnormal network traffic Proceedings of the International Database Engineered Applications Symposium Conference, IDEAS 2023, Heraklion, Crete, Greece, May 5-7, 2023 IDEAS'22: International Database Engineered Applications Symposium, Budapest, Hungary, August 22 - 24, 2022 IDEAS 2021: 25th International Database Engineering & Applications Symposium, Montreal, QC, Canada, July 14-16, 2021 IDEAS 2020: 24th International Database Engineering & Applications Symposium, Seoul, Republic of Korea, August 12-14, 2020
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1