Anderson Mozart, Gabriel Moraes, Rânik Guidolini, Vinicius B. Cardoso, Thiago Oliveira-Santos, A. D. Souza, C. Badue
{"title":"自动驾驶汽车在非结构化城市环境中的路径规划","authors":"Anderson Mozart, Gabriel Moraes, Rânik Guidolini, Vinicius B. Cardoso, Thiago Oliveira-Santos, A. D. Souza, C. Badue","doi":"10.5220/0010559602900300","DOIUrl":null,"url":null,"abstract":"We present a path planner for unstructured urban environments (PPUE) for self-driving cars. PPUE receives initial and goal poses as input, as well as maps of the environment. It employs a hybrid A* algorithm with two heuristics for generating paths, which are smoothed using Conjugate Gradient optimization. Different from previous works, PPUE uses: (i) an obstacle distance grid-map, instead of an occupancy grid-map, for representing the environment; and (ii) an accurate but simple collision model of the car. We have examined PPUE’s performance experimentally in simulated and real world scenarios. Our results show that PPUE computes smooth and safe paths, which follow the kinematic constraints of the vehicle, fast enough for suitable real world operation. * Senior Member, IEEE","PeriodicalId":6436,"journal":{"name":"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)","volume":"12 1","pages":"290-300"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Path Planning in Unstructured Urban Environments for Self-driving Cars\",\"authors\":\"Anderson Mozart, Gabriel Moraes, Rânik Guidolini, Vinicius B. Cardoso, Thiago Oliveira-Santos, A. D. Souza, C. Badue\",\"doi\":\"10.5220/0010559602900300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a path planner for unstructured urban environments (PPUE) for self-driving cars. PPUE receives initial and goal poses as input, as well as maps of the environment. It employs a hybrid A* algorithm with two heuristics for generating paths, which are smoothed using Conjugate Gradient optimization. Different from previous works, PPUE uses: (i) an obstacle distance grid-map, instead of an occupancy grid-map, for representing the environment; and (ii) an accurate but simple collision model of the car. We have examined PPUE’s performance experimentally in simulated and real world scenarios. Our results show that PPUE computes smooth and safe paths, which follow the kinematic constraints of the vehicle, fast enough for suitable real world operation. * Senior Member, IEEE\",\"PeriodicalId\":6436,\"journal\":{\"name\":\"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)\",\"volume\":\"12 1\",\"pages\":\"290-300\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0010559602900300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0010559602900300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Path Planning in Unstructured Urban Environments for Self-driving Cars
We present a path planner for unstructured urban environments (PPUE) for self-driving cars. PPUE receives initial and goal poses as input, as well as maps of the environment. It employs a hybrid A* algorithm with two heuristics for generating paths, which are smoothed using Conjugate Gradient optimization. Different from previous works, PPUE uses: (i) an obstacle distance grid-map, instead of an occupancy grid-map, for representing the environment; and (ii) an accurate but simple collision model of the car. We have examined PPUE’s performance experimentally in simulated and real world scenarios. Our results show that PPUE computes smooth and safe paths, which follow the kinematic constraints of the vehicle, fast enough for suitable real world operation. * Senior Member, IEEE