Cézar B. Lemos, P. Farias, Eduardo F. Simas Filho, A. Conceicao
{"title":"基于卷积神经网络的增材制造目标检测","authors":"Cézar B. Lemos, P. Farias, Eduardo F. Simas Filho, A. Conceicao","doi":"10.1109/ICAR46387.2019.8981618","DOIUrl":null,"url":null,"abstract":"Efficient object detection is important for automatic manufacturing systems applications. This work proposes the use of deep learning neural networks for vision-based additive manufactured object recognition. Three deep learning based object detection architectures (SSD300, SSD512 and Faster R-CNN) are applied for detection of parts manufactured on a 3D printer. The object detection information is used to feed a vision-based robotic grasping task, as part of a robotic assisted additive manufacturing system. Transfer learning is applied and a high detection efficiency is achieved for the considered dataset.","PeriodicalId":6606,"journal":{"name":"2019 19th International Conference on Advanced Robotics (ICAR)","volume":"9 1","pages":"420-425"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Convolutional Neural Network Based Object Detection for Additive Manufacturing\",\"authors\":\"Cézar B. Lemos, P. Farias, Eduardo F. Simas Filho, A. Conceicao\",\"doi\":\"10.1109/ICAR46387.2019.8981618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient object detection is important for automatic manufacturing systems applications. This work proposes the use of deep learning neural networks for vision-based additive manufactured object recognition. Three deep learning based object detection architectures (SSD300, SSD512 and Faster R-CNN) are applied for detection of parts manufactured on a 3D printer. The object detection information is used to feed a vision-based robotic grasping task, as part of a robotic assisted additive manufacturing system. Transfer learning is applied and a high detection efficiency is achieved for the considered dataset.\",\"PeriodicalId\":6606,\"journal\":{\"name\":\"2019 19th International Conference on Advanced Robotics (ICAR)\",\"volume\":\"9 1\",\"pages\":\"420-425\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 19th International Conference on Advanced Robotics (ICAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAR46387.2019.8981618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR46387.2019.8981618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Convolutional Neural Network Based Object Detection for Additive Manufacturing
Efficient object detection is important for automatic manufacturing systems applications. This work proposes the use of deep learning neural networks for vision-based additive manufactured object recognition. Three deep learning based object detection architectures (SSD300, SSD512 and Faster R-CNN) are applied for detection of parts manufactured on a 3D printer. The object detection information is used to feed a vision-based robotic grasping task, as part of a robotic assisted additive manufacturing system. Transfer learning is applied and a high detection efficiency is achieved for the considered dataset.