基于卷积神经网络的增材制造目标检测

Cézar B. Lemos, P. Farias, Eduardo F. Simas Filho, A. Conceicao
{"title":"基于卷积神经网络的增材制造目标检测","authors":"Cézar B. Lemos, P. Farias, Eduardo F. Simas Filho, A. Conceicao","doi":"10.1109/ICAR46387.2019.8981618","DOIUrl":null,"url":null,"abstract":"Efficient object detection is important for automatic manufacturing systems applications. This work proposes the use of deep learning neural networks for vision-based additive manufactured object recognition. Three deep learning based object detection architectures (SSD300, SSD512 and Faster R-CNN) are applied for detection of parts manufactured on a 3D printer. The object detection information is used to feed a vision-based robotic grasping task, as part of a robotic assisted additive manufacturing system. Transfer learning is applied and a high detection efficiency is achieved for the considered dataset.","PeriodicalId":6606,"journal":{"name":"2019 19th International Conference on Advanced Robotics (ICAR)","volume":"9 1","pages":"420-425"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Convolutional Neural Network Based Object Detection for Additive Manufacturing\",\"authors\":\"Cézar B. Lemos, P. Farias, Eduardo F. Simas Filho, A. Conceicao\",\"doi\":\"10.1109/ICAR46387.2019.8981618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient object detection is important for automatic manufacturing systems applications. This work proposes the use of deep learning neural networks for vision-based additive manufactured object recognition. Three deep learning based object detection architectures (SSD300, SSD512 and Faster R-CNN) are applied for detection of parts manufactured on a 3D printer. The object detection information is used to feed a vision-based robotic grasping task, as part of a robotic assisted additive manufacturing system. Transfer learning is applied and a high detection efficiency is achieved for the considered dataset.\",\"PeriodicalId\":6606,\"journal\":{\"name\":\"2019 19th International Conference on Advanced Robotics (ICAR)\",\"volume\":\"9 1\",\"pages\":\"420-425\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 19th International Conference on Advanced Robotics (ICAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAR46387.2019.8981618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR46387.2019.8981618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

高效的目标检测对于自动化制造系统的应用至关重要。这项工作提出了将深度学习神经网络用于基于视觉的添加剂制造物体识别。三种基于深度学习的对象检测架构(SSD300, SSD512和Faster R-CNN)应用于3D打印机制造的部件检测。作为机器人辅助增材制造系统的一部分,目标检测信息用于馈送基于视觉的机器人抓取任务。应用迁移学习,对考虑的数据集实现了较高的检测效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Convolutional Neural Network Based Object Detection for Additive Manufacturing
Efficient object detection is important for automatic manufacturing systems applications. This work proposes the use of deep learning neural networks for vision-based additive manufactured object recognition. Three deep learning based object detection architectures (SSD300, SSD512 and Faster R-CNN) are applied for detection of parts manufactured on a 3D printer. The object detection information is used to feed a vision-based robotic grasping task, as part of a robotic assisted additive manufacturing system. Transfer learning is applied and a high detection efficiency is achieved for the considered dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of Domain Randomization Techniques for Transfer Learning Robotito: programming robots from preschool to undergraduate school level A Novel Approach for Parameter Extraction of an NMPC-based Visual Follower Model Automated Conflict Resolution of Lane Change Utilizing Probability Collectives Estimating and Localizing External Forces Applied on Flexible Instruments by Shape Sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1