{"title":"中间种子异常:为什么在某些体育赛事中会发生,而在其他赛事中却不会发生?","authors":"D. Zimmerman, Hong Beng Lim","doi":"10.1515/jqas-2020-0065","DOIUrl":null,"url":null,"abstract":"Abstract Previously published statistical analyses of NCAA Division I Men’s Tournament (“March Madness”) game outcomes have revealed that the relationship between tournament seed and the time-aggregated number of third-round (“Sweet 16”) appearances for the middle half of the seeds exhibits a statistically and practically significant departure from monotonicity. In particular, the 8- and 9-seeds combined appear less often than any one of seeds 10–12. In this article, we show that a similar “middle-seed anomaly” also occurs in the NCAA Division I Women’s Tournament but does not occur in two other major sports tournaments that are similar in structure to March Madness. We offer explanations for the presence of a middle-seed anomaly in the NCAA basketball tournaments, and its absence in the others, that are based on the combined effects of the functional form of the relationship between team strength and seed specific to each tournament, the degree of parity among teams, and certain elements of tournament structure. Although these explanations account for the existence of middle-seed anomalies in the NCAA basketball tournaments, their larger-than-expected magnitudes, which arise mainly from the overperformance of seeds 10–12 in the second round, remain enigmatic.","PeriodicalId":16925,"journal":{"name":"Journal of Quantitative Analysis in Sports","volume":"73 1","pages":"171 - 185"},"PeriodicalIF":1.1000,"publicationDate":"2021-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The middle-seed anomaly: why does it occur in some sports tournaments but not others?\",\"authors\":\"D. Zimmerman, Hong Beng Lim\",\"doi\":\"10.1515/jqas-2020-0065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Previously published statistical analyses of NCAA Division I Men’s Tournament (“March Madness”) game outcomes have revealed that the relationship between tournament seed and the time-aggregated number of third-round (“Sweet 16”) appearances for the middle half of the seeds exhibits a statistically and practically significant departure from monotonicity. In particular, the 8- and 9-seeds combined appear less often than any one of seeds 10–12. In this article, we show that a similar “middle-seed anomaly” also occurs in the NCAA Division I Women’s Tournament but does not occur in two other major sports tournaments that are similar in structure to March Madness. We offer explanations for the presence of a middle-seed anomaly in the NCAA basketball tournaments, and its absence in the others, that are based on the combined effects of the functional form of the relationship between team strength and seed specific to each tournament, the degree of parity among teams, and certain elements of tournament structure. Although these explanations account for the existence of middle-seed anomalies in the NCAA basketball tournaments, their larger-than-expected magnitudes, which arise mainly from the overperformance of seeds 10–12 in the second round, remain enigmatic.\",\"PeriodicalId\":16925,\"journal\":{\"name\":\"Journal of Quantitative Analysis in Sports\",\"volume\":\"73 1\",\"pages\":\"171 - 185\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quantitative Analysis in Sports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jqas-2020-0065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Analysis in Sports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jqas-2020-0065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
The middle-seed anomaly: why does it occur in some sports tournaments but not others?
Abstract Previously published statistical analyses of NCAA Division I Men’s Tournament (“March Madness”) game outcomes have revealed that the relationship between tournament seed and the time-aggregated number of third-round (“Sweet 16”) appearances for the middle half of the seeds exhibits a statistically and practically significant departure from monotonicity. In particular, the 8- and 9-seeds combined appear less often than any one of seeds 10–12. In this article, we show that a similar “middle-seed anomaly” also occurs in the NCAA Division I Women’s Tournament but does not occur in two other major sports tournaments that are similar in structure to March Madness. We offer explanations for the presence of a middle-seed anomaly in the NCAA basketball tournaments, and its absence in the others, that are based on the combined effects of the functional form of the relationship between team strength and seed specific to each tournament, the degree of parity among teams, and certain elements of tournament structure. Although these explanations account for the existence of middle-seed anomalies in the NCAA basketball tournaments, their larger-than-expected magnitudes, which arise mainly from the overperformance of seeds 10–12 in the second round, remain enigmatic.
期刊介绍:
The Journal of Quantitative Analysis in Sports (JQAS), an official journal of the American Statistical Association, publishes timely, high-quality peer-reviewed research on the quantitative aspects of professional and amateur sports, including collegiate and Olympic competition. The scope of application reflects the increasing demand for novel methods to analyze and understand data in the growing field of sports analytics. Articles come from a wide variety of sports and diverse perspectives, and address topics such as game outcome models, measurement and evaluation of player performance, tournament structure, analysis of rules and adjudication, within-game strategy, analysis of sporting technologies, and player and team ranking methods. JQAS seeks to publish manuscripts that demonstrate original ways of approaching problems, develop cutting edge methods, and apply innovative thinking to solve difficult challenges in sports contexts. JQAS brings together researchers from various disciplines, including statistics, operations research, machine learning, scientific computing, econometrics, and sports management.