{"title":"用卷积自编码器学习运动流形","authors":"Daniel Holden, Jun Saito, T. Komura, T. Joyce","doi":"10.1145/2820903.2820918","DOIUrl":null,"url":null,"abstract":"We present a technique for learning a manifold of human motion data using Convolutional Autoencoders. Our approach is capable of learning a manifold on the complete CMU database of human motion. This manifold can be treated as a prior probability distribution over human motion data, which has many applications in animation research, including projecting invalid or corrupt motion onto the manifold for removing error, computing similarity between motions using geodesic distance along the manifold, and interpolation of motion along the manifold for avoiding blending artefacts.","PeriodicalId":21720,"journal":{"name":"SIGGRAPH Asia 2015 Technical Briefs","volume":"58 3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"253","resultStr":"{\"title\":\"Learning motion manifolds with convolutional autoencoders\",\"authors\":\"Daniel Holden, Jun Saito, T. Komura, T. Joyce\",\"doi\":\"10.1145/2820903.2820918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a technique for learning a manifold of human motion data using Convolutional Autoencoders. Our approach is capable of learning a manifold on the complete CMU database of human motion. This manifold can be treated as a prior probability distribution over human motion data, which has many applications in animation research, including projecting invalid or corrupt motion onto the manifold for removing error, computing similarity between motions using geodesic distance along the manifold, and interpolation of motion along the manifold for avoiding blending artefacts.\",\"PeriodicalId\":21720,\"journal\":{\"name\":\"SIGGRAPH Asia 2015 Technical Briefs\",\"volume\":\"58 3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"253\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGGRAPH Asia 2015 Technical Briefs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2820903.2820918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2015 Technical Briefs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2820903.2820918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning motion manifolds with convolutional autoencoders
We present a technique for learning a manifold of human motion data using Convolutional Autoencoders. Our approach is capable of learning a manifold on the complete CMU database of human motion. This manifold can be treated as a prior probability distribution over human motion data, which has many applications in animation research, including projecting invalid or corrupt motion onto the manifold for removing error, computing similarity between motions using geodesic distance along the manifold, and interpolation of motion along the manifold for avoiding blending artefacts.