Huayong Luo, Qin Wang, Tao Tao, Tian C. Zhang, Aijiao Zhou
{"title":"基于2-丙烯酰胺-2-甲基丙烷磺酸盐的强离子水凝胶正向渗透性能研究","authors":"Huayong Luo, Qin Wang, Tao Tao, Tian C. Zhang, Aijiao Zhou","doi":"10.1061/(ASCE)EE.1943-7870.0000875","DOIUrl":null,"url":null,"abstract":"AbstractWhile forward osmosis (FO) has great potential to be the next generation water treatment technology, it is constrained by the development of ideal draw agents and membranes. Herein, a series of copolymerized hydrogels based on strong ionic monomer sodium 2-acrylamido-2-methylpropane sulfonate (AMPS-Na) and thermosensitive monomer N-isopropylacrylamide (NIPAM) have been synthesized and used for the first time as draw agents in the FO process. The effects of the composition of poly(NIPAM-co-AMPS-Na) [P(NIPAM-co-AMPS)] hydrogels and operational conditions including draw agent concentrations, temperature, membrane orientation, salinity of feed solution, velocity of feed solution, and running times on the FO performance have been evaluated systematically. The results demonstrate that the water flux increases with increases of the content of AMPS-Na incorporated into the hydrogel and hydrogel concentration in the draw solution, e.g., from 0.40 LMH rising up to 2.85 LMH. Besides, the water flux increases...","PeriodicalId":17335,"journal":{"name":"Journal of the Environmental Engineering Division","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Performance of Strong Ionic Hydrogels Based on 2-Acrylamido-2-Methylpropane Sulfonate as Draw Agents for Forward Osmosis\",\"authors\":\"Huayong Luo, Qin Wang, Tao Tao, Tian C. Zhang, Aijiao Zhou\",\"doi\":\"10.1061/(ASCE)EE.1943-7870.0000875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractWhile forward osmosis (FO) has great potential to be the next generation water treatment technology, it is constrained by the development of ideal draw agents and membranes. Herein, a series of copolymerized hydrogels based on strong ionic monomer sodium 2-acrylamido-2-methylpropane sulfonate (AMPS-Na) and thermosensitive monomer N-isopropylacrylamide (NIPAM) have been synthesized and used for the first time as draw agents in the FO process. The effects of the composition of poly(NIPAM-co-AMPS-Na) [P(NIPAM-co-AMPS)] hydrogels and operational conditions including draw agent concentrations, temperature, membrane orientation, salinity of feed solution, velocity of feed solution, and running times on the FO performance have been evaluated systematically. The results demonstrate that the water flux increases with increases of the content of AMPS-Na incorporated into the hydrogel and hydrogel concentration in the draw solution, e.g., from 0.40 LMH rising up to 2.85 LMH. Besides, the water flux increases...\",\"PeriodicalId\":17335,\"journal\":{\"name\":\"Journal of the Environmental Engineering Division\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Environmental Engineering Division\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1061/(ASCE)EE.1943-7870.0000875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Environmental Engineering Division","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1061/(ASCE)EE.1943-7870.0000875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance of Strong Ionic Hydrogels Based on 2-Acrylamido-2-Methylpropane Sulfonate as Draw Agents for Forward Osmosis
AbstractWhile forward osmosis (FO) has great potential to be the next generation water treatment technology, it is constrained by the development of ideal draw agents and membranes. Herein, a series of copolymerized hydrogels based on strong ionic monomer sodium 2-acrylamido-2-methylpropane sulfonate (AMPS-Na) and thermosensitive monomer N-isopropylacrylamide (NIPAM) have been synthesized and used for the first time as draw agents in the FO process. The effects of the composition of poly(NIPAM-co-AMPS-Na) [P(NIPAM-co-AMPS)] hydrogels and operational conditions including draw agent concentrations, temperature, membrane orientation, salinity of feed solution, velocity of feed solution, and running times on the FO performance have been evaluated systematically. The results demonstrate that the water flux increases with increases of the content of AMPS-Na incorporated into the hydrogel and hydrogel concentration in the draw solution, e.g., from 0.40 LMH rising up to 2.85 LMH. Besides, the water flux increases...