评论小李b孟的《方差翻倍,贝叶斯变脏,河豚变大,画小孩图

T. Junk
{"title":"评论小李b孟的《方差翻倍,贝叶斯变脏,河豚变大,画小孩图","authors":"T. Junk","doi":"10.51387/22-nejsds6b","DOIUrl":null,"url":null,"abstract":"This contribution is a series of comments on Prof. Xiao-Li Meng’s article, “Double Your Variance, Dirtify Your Bayes, Devour Your Pufferfish, and Draw Your Kidstogram”. Prof. Meng’s article offers some radical proposals and not-so-radical proposals to improve the quality of statistical inference used in the sciences and also to extend distributional thinking to early education. Discussions and alternative proposals are presented.","PeriodicalId":94360,"journal":{"name":"The New England Journal of Statistics in Data Science","volume":"1997 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comment on “Double Your Variance, Dirtify Your Bayes, Devour Your Pufferfish, and Draw Your Kidstogram,” by Xiao-Li Meng\",\"authors\":\"T. Junk\",\"doi\":\"10.51387/22-nejsds6b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This contribution is a series of comments on Prof. Xiao-Li Meng’s article, “Double Your Variance, Dirtify Your Bayes, Devour Your Pufferfish, and Draw Your Kidstogram”. Prof. Meng’s article offers some radical proposals and not-so-radical proposals to improve the quality of statistical inference used in the sciences and also to extend distributional thinking to early education. Discussions and alternative proposals are presented.\",\"PeriodicalId\":94360,\"journal\":{\"name\":\"The New England Journal of Statistics in Data Science\",\"volume\":\"1997 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The New England Journal of Statistics in Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51387/22-nejsds6b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The New England Journal of Statistics in Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51387/22-nejsds6b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这篇文章是对孟晓丽教授的文章《方差翻倍,贝叶斯变脏,河豚变大,画小孩图》的系列评论。孟教授的文章提出了一些激进的建议和不那么激进的建议,以提高科学中使用的统计推断的质量,并将分布思维扩展到早期教育。提出了讨论和备选建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comment on “Double Your Variance, Dirtify Your Bayes, Devour Your Pufferfish, and Draw Your Kidstogram,” by Xiao-Li Meng
This contribution is a series of comments on Prof. Xiao-Li Meng’s article, “Double Your Variance, Dirtify Your Bayes, Devour Your Pufferfish, and Draw Your Kidstogram”. Prof. Meng’s article offers some radical proposals and not-so-radical proposals to improve the quality of statistical inference used in the sciences and also to extend distributional thinking to early education. Discussions and alternative proposals are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling Multivariate Spatial Dependencies Using Graphical Models. Effect of model space priors on statistical inference with model uncertainty. Bayesian Variable Selection in Double Generalized Linear Tweedie Spatial Process Models Bayesian D-Optimal Design of Experiments with Quantitative and Qualitative Responses Construction of Supersaturated Designs with Small Coherence for Variable Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1