高能量密度压缩极端状态下材料的研究技术

Hye-Sook Park, S. Ali, P. Celliers, F. Coppari, J. Eggert, A. Krygier, A. Lazicki, J. Mcnaney, M. Millot, Y. Ping, R. Rudd, B. Remington, H. Sio, R. Smith, M. Knudson, E. McBride
{"title":"高能量密度压缩极端状态下材料的研究技术","authors":"Hye-Sook Park, S. Ali, P. Celliers, F. Coppari, J. Eggert, A. Krygier, A. Lazicki, J. Mcnaney, M. Millot, Y. Ping, R. Rudd, B. Remington, H. Sio, R. Smith, M. Knudson, E. McBride","doi":"10.1063/5.0046199","DOIUrl":null,"url":null,"abstract":"The properties of materials under extreme conditions of pressure and density are of key interest to a number of fields, including planetary geophysics, materials science, and inertial confinement fusion. In geophysics, the equations of state of planetary materials, such as hydrogen and iron, under ultrahigh pressure and density provide a better understanding of their formation and interior structure [Celliers et al., “Insulator-metal transition in dense fluid deuterium,” Science 361, 677–682 (2018) and Smith et al., “Equation of state of iron under core conditions of large rocky exoplanets,” Nat. Astron. 2, 591–682 (2018)]. The processes of interest in these fields occur under conditions of high pressure (100 GPa–100 TPa), high temperature (>3000 K), and sometimes at high strain rates (>103 s−1) depending on the process. With the advent of high energy density (HED) facilities, such as the National Ignition Facility (NIF), Linear Coherent Light Source, Omega Laser Facility, and Z, these conditions are reachable and numerous experimental platforms have been developed. To measure compression under ultrahigh pressure, stepped targets are ramp-compressed and the sound velocity, measured by the velocity interferometer system for any reflector diagnostic technique, from which the stress-density of relevant materials is deduced at pulsed power [M. D. Knudson and M. P. Desjarlais, “High-precision shock wave measurements of deuterium: Evaluation of exchange-correlation functionals at the molecular-to-atomic transition,” Phys. Rev. Lett. 118, 035501 (2017)] and laser [Smith et al., “Equation of state of iron under core conditions of large rocky exoplanets,” Nat. Astron. 2, 591–682 (2018)] facilities. To measure strength under high pressure and strain rates, experimenters measure the growth of Rayleigh–Taylor instabilities using face-on radiography [Park et al., “Grain-size-independent plastic flow at ultrahigh pressures and strain rates,” Phys. Rev. Lett. 114, 065502 (2015)]. The crystal structure of materials under high compression is measured by dynamic x-ray diffraction [Rygg et al., “X-ray diffraction at the national ignition facility,” Rev. Sci. Instrum. 91, 043902 (2020) and McBride et al., “Phase transition lowering in dynamically compressed silicon,” Nat. Phys. 15, 89–94 (2019)]. Medium range material temperatures (a few thousand degrees) can be measured by extended x-ray absorption fine structure techniques, Yaakobi et al., “Extended x-ray absorption fine structure measurements of laser-shocked V and Ti and crystal phase transformation in Ti,” Phys. Rev. Lett. 92, 095504 (2004) and Ping et al., “Solid iron compressed up to 560 GPa,” Phys. Rev. Lett. 111, 065501 (2013), whereas more extreme temperatures are measured using x-ray Thomson scattering or pyrometry. This manuscript will review the scientific motivations, experimental techniques, and the regimes that can be probed for the study of materials under extreme HED conditions.","PeriodicalId":9375,"journal":{"name":"Bulletin of the American Physical Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Techniques for studying materials under extreme states of high energy density compression\",\"authors\":\"Hye-Sook Park, S. Ali, P. Celliers, F. Coppari, J. Eggert, A. Krygier, A. Lazicki, J. Mcnaney, M. Millot, Y. Ping, R. Rudd, B. Remington, H. Sio, R. Smith, M. Knudson, E. McBride\",\"doi\":\"10.1063/5.0046199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The properties of materials under extreme conditions of pressure and density are of key interest to a number of fields, including planetary geophysics, materials science, and inertial confinement fusion. In geophysics, the equations of state of planetary materials, such as hydrogen and iron, under ultrahigh pressure and density provide a better understanding of their formation and interior structure [Celliers et al., “Insulator-metal transition in dense fluid deuterium,” Science 361, 677–682 (2018) and Smith et al., “Equation of state of iron under core conditions of large rocky exoplanets,” Nat. Astron. 2, 591–682 (2018)]. The processes of interest in these fields occur under conditions of high pressure (100 GPa–100 TPa), high temperature (>3000 K), and sometimes at high strain rates (>103 s−1) depending on the process. With the advent of high energy density (HED) facilities, such as the National Ignition Facility (NIF), Linear Coherent Light Source, Omega Laser Facility, and Z, these conditions are reachable and numerous experimental platforms have been developed. To measure compression under ultrahigh pressure, stepped targets are ramp-compressed and the sound velocity, measured by the velocity interferometer system for any reflector diagnostic technique, from which the stress-density of relevant materials is deduced at pulsed power [M. D. Knudson and M. P. Desjarlais, “High-precision shock wave measurements of deuterium: Evaluation of exchange-correlation functionals at the molecular-to-atomic transition,” Phys. Rev. Lett. 118, 035501 (2017)] and laser [Smith et al., “Equation of state of iron under core conditions of large rocky exoplanets,” Nat. Astron. 2, 591–682 (2018)] facilities. To measure strength under high pressure and strain rates, experimenters measure the growth of Rayleigh–Taylor instabilities using face-on radiography [Park et al., “Grain-size-independent plastic flow at ultrahigh pressures and strain rates,” Phys. Rev. Lett. 114, 065502 (2015)]. The crystal structure of materials under high compression is measured by dynamic x-ray diffraction [Rygg et al., “X-ray diffraction at the national ignition facility,” Rev. Sci. Instrum. 91, 043902 (2020) and McBride et al., “Phase transition lowering in dynamically compressed silicon,” Nat. Phys. 15, 89–94 (2019)]. Medium range material temperatures (a few thousand degrees) can be measured by extended x-ray absorption fine structure techniques, Yaakobi et al., “Extended x-ray absorption fine structure measurements of laser-shocked V and Ti and crystal phase transformation in Ti,” Phys. Rev. Lett. 92, 095504 (2004) and Ping et al., “Solid iron compressed up to 560 GPa,” Phys. Rev. Lett. 111, 065501 (2013), whereas more extreme temperatures are measured using x-ray Thomson scattering or pyrometry. This manuscript will review the scientific motivations, experimental techniques, and the regimes that can be probed for the study of materials under extreme HED conditions.\",\"PeriodicalId\":9375,\"journal\":{\"name\":\"Bulletin of the American Physical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the American Physical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0046199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the American Physical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0046199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

材料在极端压力和密度条件下的特性是许多领域的关键兴趣,包括行星地球物理、材料科学和惯性约束聚变。在地球物理学中,在超高压力和密度下,行星物质(如氢和铁)的状态方程可以更好地理解它们的形成和内部结构[Celliers等人,“致密流体氘中的绝缘体-金属转变,”Science 361, 677-682(2018)和Smith等人,“大型岩石系外行星核心条件下铁的状态方程,”Nat. Astron. 2591 - 682(2018)]。这些领域中感兴趣的过程发生在高压(100 GPa-100 TPa),高温(>3000 K)的条件下,有时在高应变速率(>103 s−1)下,具体取决于工艺。随着高能量密度(HED)设施的出现,如国家点火设施(NIF)、线性相干光源、欧米茄激光设施和Z,这些条件是可以达到的,并且已经开发了许多实验平台。为了测量超高压下的压缩,对台阶目标进行斜坡压缩,并通过速度干涉仪系统测量声速,用于任何反射器诊断技术,由此推断出脉冲功率下相关材料的应力密度[M]。D. Knudson和M. P. Desjarlais,“氘的高精度激波测量:分子到原子跃迁交换相关功能的评估”,物理学报。[史密斯等人,“大型岩石系外行星核心条件下铁的状态方程,”天文学报,2591 - 682(2018)]设施。为了测量高压和应变速率下的强度,实验人员使用面朝射线照相法测量瑞利-泰勒不稳定性的增长[Park等人,“超高压和应变速率下与晶粒尺寸无关的塑性流动”,《物理学》。生物工程学报,2014(5):481 - 481。材料在高压缩条件下的晶体结构是通过动态x射线衍射测量的[Rygg等人," x射线衍射在国家点火设施," Rev. Sci。仪器,91,043902(2020)和McBride等人,“动态压缩硅的相变降低,”物理学报,15,89 - 94(2019)]。Yaakobi等人,“扩展x射线吸收精细结构测量激光冲击V和Ti的扩展x射线吸收精细结构和Ti中的晶体相变,”物理学。Rev. Lett. 92,095504 (2004) and Ping et al.,“固体铁压缩到560gpa,”Phys。Rev. Lett. 111, 065501(2013),而使用x射线汤姆逊散射或高温法测量更极端的温度。这篇手稿将回顾科学动机,实验技术,和制度,可以探讨材料在极端HED条件下的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Techniques for studying materials under extreme states of high energy density compression
The properties of materials under extreme conditions of pressure and density are of key interest to a number of fields, including planetary geophysics, materials science, and inertial confinement fusion. In geophysics, the equations of state of planetary materials, such as hydrogen and iron, under ultrahigh pressure and density provide a better understanding of their formation and interior structure [Celliers et al., “Insulator-metal transition in dense fluid deuterium,” Science 361, 677–682 (2018) and Smith et al., “Equation of state of iron under core conditions of large rocky exoplanets,” Nat. Astron. 2, 591–682 (2018)]. The processes of interest in these fields occur under conditions of high pressure (100 GPa–100 TPa), high temperature (>3000 K), and sometimes at high strain rates (>103 s−1) depending on the process. With the advent of high energy density (HED) facilities, such as the National Ignition Facility (NIF), Linear Coherent Light Source, Omega Laser Facility, and Z, these conditions are reachable and numerous experimental platforms have been developed. To measure compression under ultrahigh pressure, stepped targets are ramp-compressed and the sound velocity, measured by the velocity interferometer system for any reflector diagnostic technique, from which the stress-density of relevant materials is deduced at pulsed power [M. D. Knudson and M. P. Desjarlais, “High-precision shock wave measurements of deuterium: Evaluation of exchange-correlation functionals at the molecular-to-atomic transition,” Phys. Rev. Lett. 118, 035501 (2017)] and laser [Smith et al., “Equation of state of iron under core conditions of large rocky exoplanets,” Nat. Astron. 2, 591–682 (2018)] facilities. To measure strength under high pressure and strain rates, experimenters measure the growth of Rayleigh–Taylor instabilities using face-on radiography [Park et al., “Grain-size-independent plastic flow at ultrahigh pressures and strain rates,” Phys. Rev. Lett. 114, 065502 (2015)]. The crystal structure of materials under high compression is measured by dynamic x-ray diffraction [Rygg et al., “X-ray diffraction at the national ignition facility,” Rev. Sci. Instrum. 91, 043902 (2020) and McBride et al., “Phase transition lowering in dynamically compressed silicon,” Nat. Phys. 15, 89–94 (2019)]. Medium range material temperatures (a few thousand degrees) can be measured by extended x-ray absorption fine structure techniques, Yaakobi et al., “Extended x-ray absorption fine structure measurements of laser-shocked V and Ti and crystal phase transformation in Ti,” Phys. Rev. Lett. 92, 095504 (2004) and Ping et al., “Solid iron compressed up to 560 GPa,” Phys. Rev. Lett. 111, 065501 (2013), whereas more extreme temperatures are measured using x-ray Thomson scattering or pyrometry. This manuscript will review the scientific motivations, experimental techniques, and the regimes that can be probed for the study of materials under extreme HED conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Molecular Simulation and Spectroscopy of a Strong Multipolar Fluid Investigation antiviral effects of cold atmospheric plasma Impact of Spectral Photon Sorting in Large-Scale Neutrino Detectors Design and Construction of Electronics for Measuring Superconducting-to-Normal State Switching Statistics of a Josephson Junction Coupling of fully symmetric As phonon to magnetism in iron based superconductors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1