{"title":"缺乏秩权矩阵的最小二乘平差及其在图像/激光雷达数据处理中的适用性","authors":"Radhika Ravi, A. Habib","doi":"10.14358/pers.20-00081r3","DOIUrl":null,"url":null,"abstract":"This article proposes a solution to special least squares adjustment (LSA) models with a rank-deficient weight matrix, which are commonly encountered in geomatics. The two sources of rank deficiency in weight matrices are discussed: naturally occurring due to the inherent characteristics\n of LSA mathematical models and artificially induced to eliminate nuisance parameters from LSA estimation. The physical interpretation of the sources of rank deficiency is demonstrated using a case study to solve the problem of 3D line fitting, which is often encountered in geomatics\n but has not been addressed fully to date. Finally, some geomatics-related applications—mobile lidar system calibration, point cloud registration, and single-photo resection—are discussed along with respective experimental results, to emphasize the need to assess LSA models\n and their weight matrices to draw inferences regarding the effective contribution of observations. The discussion and results demonstrate the vast applications of this research in geomatics as well as other engineering domains.","PeriodicalId":49702,"journal":{"name":"Photogrammetric Engineering and Remote Sensing","volume":"14 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Least Squares Adjustment with a Rank-Deficient Weight Matrix and Its Applicability to Image/Lidar Data Processing\",\"authors\":\"Radhika Ravi, A. Habib\",\"doi\":\"10.14358/pers.20-00081r3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes a solution to special least squares adjustment (LSA) models with a rank-deficient weight matrix, which are commonly encountered in geomatics. The two sources of rank deficiency in weight matrices are discussed: naturally occurring due to the inherent characteristics\\n of LSA mathematical models and artificially induced to eliminate nuisance parameters from LSA estimation. The physical interpretation of the sources of rank deficiency is demonstrated using a case study to solve the problem of 3D line fitting, which is often encountered in geomatics\\n but has not been addressed fully to date. Finally, some geomatics-related applications—mobile lidar system calibration, point cloud registration, and single-photo resection—are discussed along with respective experimental results, to emphasize the need to assess LSA models\\n and their weight matrices to draw inferences regarding the effective contribution of observations. The discussion and results demonstrate the vast applications of this research in geomatics as well as other engineering domains.\",\"PeriodicalId\":49702,\"journal\":{\"name\":\"Photogrammetric Engineering and Remote Sensing\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photogrammetric Engineering and Remote Sensing\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.14358/pers.20-00081r3\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering and Remote Sensing","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.14358/pers.20-00081r3","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Least Squares Adjustment with a Rank-Deficient Weight Matrix and Its Applicability to Image/Lidar Data Processing
This article proposes a solution to special least squares adjustment (LSA) models with a rank-deficient weight matrix, which are commonly encountered in geomatics. The two sources of rank deficiency in weight matrices are discussed: naturally occurring due to the inherent characteristics
of LSA mathematical models and artificially induced to eliminate nuisance parameters from LSA estimation. The physical interpretation of the sources of rank deficiency is demonstrated using a case study to solve the problem of 3D line fitting, which is often encountered in geomatics
but has not been addressed fully to date. Finally, some geomatics-related applications—mobile lidar system calibration, point cloud registration, and single-photo resection—are discussed along with respective experimental results, to emphasize the need to assess LSA models
and their weight matrices to draw inferences regarding the effective contribution of observations. The discussion and results demonstrate the vast applications of this research in geomatics as well as other engineering domains.
期刊介绍:
Photogrammetric Engineering & Remote Sensing commonly referred to as PE&RS, is the official journal of imaging and geospatial information science and technology. Included in the journal on a regular basis are highlight articles such as the popular columns “Grids & Datums” and “Mapping Matters” and peer reviewed technical papers.
We publish thousands of documents, reports, codes, and informational articles in and about the industries relating to Geospatial Sciences, Remote Sensing, Photogrammetry and other imaging sciences.