结合核主成分分析的隐马尔可夫模型非线性多模过程故障检测

Peng Peng, Jiaxin Zhao, Yi Zhang, Heming Zhang
{"title":"结合核主成分分析的隐马尔可夫模型非线性多模过程故障检测","authors":"Peng Peng, Jiaxin Zhao, Yi Zhang, Heming Zhang","doi":"10.1109/COASE.2019.8843205","DOIUrl":null,"url":null,"abstract":"Data-driven techniques become increasingly popular in the field of industrial fault detection. Regarding the complex nonlinear industrial process accompanied by multiple operational monitoring modes, conventional multivariate monitoring techniques such as kernel principal component analysis (KPCA) are not suitable. In this paper, a novel hidden Markov model (HMM) combined with kernel principal component analysis is proposed for nonlinear multimode process fault detection. Firstly, the HMM is built from the measurement data of different modes so as to estimate the dynamic mode sequence. Furthermore, a local KPCA model is developed to detect the fault of each mode. The effectiveness of the proposed method is shown through a numerical nonlinear multimode simulation example and Tennessee Eastman (TE) Chemical benchmark process. The comparison results demonstrate that the proposed HMM-KPCA method precedes the conventional KPCA method due to the high fault detection rate (FDR) and low false alarm rate (FAR).","PeriodicalId":6695,"journal":{"name":"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)","volume":"42 1","pages":"1586-1591"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Hidden Markov Model Combined with Kernel Principal Component Analysis for Nonlinear Multimode Process Fault Detection\",\"authors\":\"Peng Peng, Jiaxin Zhao, Yi Zhang, Heming Zhang\",\"doi\":\"10.1109/COASE.2019.8843205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data-driven techniques become increasingly popular in the field of industrial fault detection. Regarding the complex nonlinear industrial process accompanied by multiple operational monitoring modes, conventional multivariate monitoring techniques such as kernel principal component analysis (KPCA) are not suitable. In this paper, a novel hidden Markov model (HMM) combined with kernel principal component analysis is proposed for nonlinear multimode process fault detection. Firstly, the HMM is built from the measurement data of different modes so as to estimate the dynamic mode sequence. Furthermore, a local KPCA model is developed to detect the fault of each mode. The effectiveness of the proposed method is shown through a numerical nonlinear multimode simulation example and Tennessee Eastman (TE) Chemical benchmark process. The comparison results demonstrate that the proposed HMM-KPCA method precedes the conventional KPCA method due to the high fault detection rate (FDR) and low false alarm rate (FAR).\",\"PeriodicalId\":6695,\"journal\":{\"name\":\"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)\",\"volume\":\"42 1\",\"pages\":\"1586-1591\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COASE.2019.8843205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2019.8843205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

数据驱动技术在工业故障检测领域越来越受欢迎。对于具有多种运行监测模式的复杂非线性工业过程,核主成分分析(KPCA)等传统的多变量监测技术并不适用。本文提出了一种结合核主成分分析的隐马尔可夫模型用于非线性多模过程故障检测。首先,利用不同模态的测量数据建立HMM,估计动态模态序列;在此基础上,建立了局部KPCA模型来检测各模式的故障。通过数值非线性多模仿真算例和田纳西伊士曼化工基准过程验证了该方法的有效性。结果表明,该方法具有较高的故障检出率(FDR)和较低的虚警率(FAR),优于传统的KPCA方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hidden Markov Model Combined with Kernel Principal Component Analysis for Nonlinear Multimode Process Fault Detection
Data-driven techniques become increasingly popular in the field of industrial fault detection. Regarding the complex nonlinear industrial process accompanied by multiple operational monitoring modes, conventional multivariate monitoring techniques such as kernel principal component analysis (KPCA) are not suitable. In this paper, a novel hidden Markov model (HMM) combined with kernel principal component analysis is proposed for nonlinear multimode process fault detection. Firstly, the HMM is built from the measurement data of different modes so as to estimate the dynamic mode sequence. Furthermore, a local KPCA model is developed to detect the fault of each mode. The effectiveness of the proposed method is shown through a numerical nonlinear multimode simulation example and Tennessee Eastman (TE) Chemical benchmark process. The comparison results demonstrate that the proposed HMM-KPCA method precedes the conventional KPCA method due to the high fault detection rate (FDR) and low false alarm rate (FAR).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A proposed mapping method for aligning machine execution data to numerical control code optimizing outpatient Department Staffing Level using Multi-Fidelity Models Advanced Sensor and Target Development to Support Robot Accuracy Degradation Assessment Multi-Task Hierarchical Imitation Learning for Home Automation Deep Reinforcement Learning of Robotic Precision Insertion Skill Accelerated by Demonstrations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1