I. Polunkin, V. Pilyavsky, T. Kamenieva, S. Melnykova, О.О. Gajdaj, Yu. I. Bogomolov
{"title":"多层类富勒烯结构在分子氧氧化n -癸烷过程中作用的温度反演","authors":"I. Polunkin, V. Pilyavsky, T. Kamenieva, S. Melnykova, О.О. Gajdaj, Yu. I. Bogomolov","doi":"10.15407/kataliz2021.32.099","DOIUrl":null,"url":null,"abstract":"It was established that at low temperatures MFS inhibit the oxidation of n-decan, and at temperatures close to the boiling point of the hydrocarbon, on the contrary, accelerate the transformation of the original alkane molecules. The composition of alkane transformation products in the high-temperature two-phase (gas-liquid) oxidation regime was analyzed by gas-liquid chromatography. It is shown that the transformation of n-decan molecules occurs according to the same schemes both in the case of oxidation without the additive of MFS, and in the presence of these compounds in a liquid. The work is devoted to the actual problem of increasing the energy efficiency of liquid motor fuels (gasoline, diesel and jet fuels) in transport power plants. One of the most acceptable ways to solve this problem at the present stage, which does not require capital expenditure, is to improve the processes of chemical transformations of fuel molecules in engines under the action of additives. The use of multilayer fullerene-like structures (MFS) as additives to motor fuels is proposed. The influence of additives modified MFS on the conversion of reagents in the processes of liquid-phase oxidation of n-decan by molecular oxygen at low (70°C) and high (150°C) temperatures has been studied. The change in the direction of the MFS action on chemical transformation of initial reagents depending on process temperature is experimentally revealed. It was established that at low temperatures MFS inhibit the oxidation of n-decan, and at temperatures close to the boiling point of hydrocarbons, on the contrary, accelerate the transformation of the original alkane molecules. The composition of alkane transformation products at high-temperature two-phase (gas-liquid) oxidation regime was analyzed by gas-liquid chromatography. It is shown that the transformation of n-decan molecules occurs according to the same schemes both in the case of oxidation without the additive of MFS, and in the presence of these compounds in a liquid.","PeriodicalId":9649,"journal":{"name":"Catalysis and Petrochemistry","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature inversion of the action of multilayer fullerenoid structures in the oxidation of N-decan by molecular oxygen\",\"authors\":\"I. Polunkin, V. Pilyavsky, T. Kamenieva, S. Melnykova, О.О. Gajdaj, Yu. I. Bogomolov\",\"doi\":\"10.15407/kataliz2021.32.099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It was established that at low temperatures MFS inhibit the oxidation of n-decan, and at temperatures close to the boiling point of the hydrocarbon, on the contrary, accelerate the transformation of the original alkane molecules. The composition of alkane transformation products in the high-temperature two-phase (gas-liquid) oxidation regime was analyzed by gas-liquid chromatography. It is shown that the transformation of n-decan molecules occurs according to the same schemes both in the case of oxidation without the additive of MFS, and in the presence of these compounds in a liquid. The work is devoted to the actual problem of increasing the energy efficiency of liquid motor fuels (gasoline, diesel and jet fuels) in transport power plants. One of the most acceptable ways to solve this problem at the present stage, which does not require capital expenditure, is to improve the processes of chemical transformations of fuel molecules in engines under the action of additives. The use of multilayer fullerene-like structures (MFS) as additives to motor fuels is proposed. The influence of additives modified MFS on the conversion of reagents in the processes of liquid-phase oxidation of n-decan by molecular oxygen at low (70°C) and high (150°C) temperatures has been studied. The change in the direction of the MFS action on chemical transformation of initial reagents depending on process temperature is experimentally revealed. It was established that at low temperatures MFS inhibit the oxidation of n-decan, and at temperatures close to the boiling point of hydrocarbons, on the contrary, accelerate the transformation of the original alkane molecules. The composition of alkane transformation products at high-temperature two-phase (gas-liquid) oxidation regime was analyzed by gas-liquid chromatography. It is shown that the transformation of n-decan molecules occurs according to the same schemes both in the case of oxidation without the additive of MFS, and in the presence of these compounds in a liquid.\",\"PeriodicalId\":9649,\"journal\":{\"name\":\"Catalysis and Petrochemistry\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis and Petrochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/kataliz2021.32.099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis and Petrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/kataliz2021.32.099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Temperature inversion of the action of multilayer fullerenoid structures in the oxidation of N-decan by molecular oxygen
It was established that at low temperatures MFS inhibit the oxidation of n-decan, and at temperatures close to the boiling point of the hydrocarbon, on the contrary, accelerate the transformation of the original alkane molecules. The composition of alkane transformation products in the high-temperature two-phase (gas-liquid) oxidation regime was analyzed by gas-liquid chromatography. It is shown that the transformation of n-decan molecules occurs according to the same schemes both in the case of oxidation without the additive of MFS, and in the presence of these compounds in a liquid. The work is devoted to the actual problem of increasing the energy efficiency of liquid motor fuels (gasoline, diesel and jet fuels) in transport power plants. One of the most acceptable ways to solve this problem at the present stage, which does not require capital expenditure, is to improve the processes of chemical transformations of fuel molecules in engines under the action of additives. The use of multilayer fullerene-like structures (MFS) as additives to motor fuels is proposed. The influence of additives modified MFS on the conversion of reagents in the processes of liquid-phase oxidation of n-decan by molecular oxygen at low (70°C) and high (150°C) temperatures has been studied. The change in the direction of the MFS action on chemical transformation of initial reagents depending on process temperature is experimentally revealed. It was established that at low temperatures MFS inhibit the oxidation of n-decan, and at temperatures close to the boiling point of hydrocarbons, on the contrary, accelerate the transformation of the original alkane molecules. The composition of alkane transformation products at high-temperature two-phase (gas-liquid) oxidation regime was analyzed by gas-liquid chromatography. It is shown that the transformation of n-decan molecules occurs according to the same schemes both in the case of oxidation without the additive of MFS, and in the presence of these compounds in a liquid.