{"title":"缺失测量的分层生存数据的逆概率加权logrank检验","authors":"Rim Ben Elouefi, Foued Saâdaoui","doi":"10.1111/stan.12276","DOIUrl":null,"url":null,"abstract":"The stratified logrank test can be used to compare survival distributions of several groups of patients, while adjusting for the effect of some discrete variable that may be predictive of the survival outcome. In practice, it can happen that this discrete variable is missing for some patients. An inverse‐probability‐weighted version of the stratified logrank statistic is introduced to tackle this issue. Its asymptotic distribution is derived under the null hypothesis of equality of the survival distributions. A simulation study is conducted to assess behavior of the proposed test statistic in finite samples. An analysis of a medical dataset illustrates the methodology.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse‐probability‐weighted logrank test for stratified survival data with missing measurements\",\"authors\":\"Rim Ben Elouefi, Foued Saâdaoui\",\"doi\":\"10.1111/stan.12276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The stratified logrank test can be used to compare survival distributions of several groups of patients, while adjusting for the effect of some discrete variable that may be predictive of the survival outcome. In practice, it can happen that this discrete variable is missing for some patients. An inverse‐probability‐weighted version of the stratified logrank statistic is introduced to tackle this issue. Its asymptotic distribution is derived under the null hypothesis of equality of the survival distributions. A simulation study is conducted to assess behavior of the proposed test statistic in finite samples. An analysis of a medical dataset illustrates the methodology.\",\"PeriodicalId\":51178,\"journal\":{\"name\":\"Statistica Neerlandica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica Neerlandica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/stan.12276\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Neerlandica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12276","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Inverse‐probability‐weighted logrank test for stratified survival data with missing measurements
The stratified logrank test can be used to compare survival distributions of several groups of patients, while adjusting for the effect of some discrete variable that may be predictive of the survival outcome. In practice, it can happen that this discrete variable is missing for some patients. An inverse‐probability‐weighted version of the stratified logrank statistic is introduced to tackle this issue. Its asymptotic distribution is derived under the null hypothesis of equality of the survival distributions. A simulation study is conducted to assess behavior of the proposed test statistic in finite samples. An analysis of a medical dataset illustrates the methodology.
期刊介绍:
Statistica Neerlandica has been the journal of the Netherlands Society for Statistics and Operations Research since 1946. It covers all areas of statistics, from theoretical to applied, with a special emphasis on mathematical statistics, statistics for the behavioural sciences and biostatistics. This wide scope is reflected by the expertise of the journal’s editors representing these areas. The diverse editorial board is committed to a fast and fair reviewing process, and will judge submissions on quality, correctness, relevance and originality. Statistica Neerlandica encourages transparency and reproducibility, and offers online resources to make data, code, simulation results and other additional materials publicly available.