醋酸钠胁迫下雨红球菌植物烯和虾青素积累及相关基因表达

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2020-11-19 DOI:10.3354/ab00733
X. Cong, X. Zang, M. Dong, Z. Wang, B. He, L. Hou, X. Wei, F. Zhang, M. Shang, Z. Yangzong, R. Li, X. Zhang
{"title":"醋酸钠胁迫下雨红球菌植物烯和虾青素积累及相关基因表达","authors":"X. Cong, X. Zang, M. Dong, Z. Wang, B. He, L. Hou, X. Wei, F. Zhang, M. Shang, Z. Yangzong, R. Li, X. Zhang","doi":"10.3354/ab00733","DOIUrl":null,"url":null,"abstract":"Phytoene and astaxanthin are 2 important carotenoids in the green alga Haematococcus pluvialis. Under environmental stress, the synthesis of phytoene in H. pluvialis increases significantly, and phytoene is converted to astaxanthin through enzymatic catalysis. This paper analyzes the relationship between astaxanthin and phytoene accumulation in carotenoid synthesis pathways under different concentrations of sodium acetate (NaAc) by high-performance liquid chromatography. The highest concentrations of phytoene and astaxanthin were observed at the NaAc concentration of 6 g l−1 on the 12th day of induction. The highest astaxanthin concentration achieved was 2.26 ± 0.28%. Therefore, we concluded that 6 g l−1 NaAc and induction for 12 d provided the optimal inducing conditions for astaxanthin accumulation in H. pluvialis. psy, pds, lcyB, β-carotene ketolase crtw, and crtz, which are genes related to phytoene and astaxanthin synthesis, were cloned and studied at the transcriptional level. crtw and crtz were continuously up-regulated since the first day of induction, while psy, pds, and lcyB were continuously up-regulated starting on the 3rd day of induction. These findings are important for enhancing our understanding of the mechanism of accumulation of phytoene and astaxanthin in H. pluvialis and provide a foundation for identifying the induction conditions necessary for optimizing astaxanthin production and increasing astaxanthin yields.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Accumulation of phytoene and astaxanthin and related genes expression in Haematococcus pluvialis under sodium acetate stress\",\"authors\":\"X. Cong, X. Zang, M. Dong, Z. Wang, B. He, L. Hou, X. Wei, F. Zhang, M. Shang, Z. Yangzong, R. Li, X. Zhang\",\"doi\":\"10.3354/ab00733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phytoene and astaxanthin are 2 important carotenoids in the green alga Haematococcus pluvialis. Under environmental stress, the synthesis of phytoene in H. pluvialis increases significantly, and phytoene is converted to astaxanthin through enzymatic catalysis. This paper analyzes the relationship between astaxanthin and phytoene accumulation in carotenoid synthesis pathways under different concentrations of sodium acetate (NaAc) by high-performance liquid chromatography. The highest concentrations of phytoene and astaxanthin were observed at the NaAc concentration of 6 g l−1 on the 12th day of induction. The highest astaxanthin concentration achieved was 2.26 ± 0.28%. Therefore, we concluded that 6 g l−1 NaAc and induction for 12 d provided the optimal inducing conditions for astaxanthin accumulation in H. pluvialis. psy, pds, lcyB, β-carotene ketolase crtw, and crtz, which are genes related to phytoene and astaxanthin synthesis, were cloned and studied at the transcriptional level. crtw and crtz were continuously up-regulated since the first day of induction, while psy, pds, and lcyB were continuously up-regulated starting on the 3rd day of induction. These findings are important for enhancing our understanding of the mechanism of accumulation of phytoene and astaxanthin in H. pluvialis and provide a foundation for identifying the induction conditions necessary for optimizing astaxanthin production and increasing astaxanthin yields.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3354/ab00733\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3354/ab00733","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

摘要

植物烯和虾青素是绿藻雨红球藻中两种重要的类胡萝卜素。在环境胁迫下,雨水杨中植物烯的合成显著增加,植物烯通过酶催化转化为虾青素。采用高效液相色谱法分析了不同浓度乙酸钠(NaAc)作用下类胡萝卜素合成途径中虾青素与植物烯积累的关系。诱导第12天NaAc浓度为6 g l−1时,植物烯和虾青素含量最高。最高虾青素浓度为2.26±0.28%。综上所述,6 g l−1 NaAc诱导12 d为雨水杨虾青素积累的最佳诱导条件。克隆了植物烯和虾青素合成相关基因psy、pds、lcyB、β-胡萝卜素酮化酶crtw和crtz,并在转录水平上进行了研究。crtw、crtz自诱导第1天开始持续上调,而psy、pds、lcyB自诱导第3天开始持续上调。这些发现对于进一步了解雨水杨中植物烯和虾青素的积累机制具有重要意义,并为确定优化虾青素产量和提高虾青素产量所需的诱导条件提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accumulation of phytoene and astaxanthin and related genes expression in Haematococcus pluvialis under sodium acetate stress
Phytoene and astaxanthin are 2 important carotenoids in the green alga Haematococcus pluvialis. Under environmental stress, the synthesis of phytoene in H. pluvialis increases significantly, and phytoene is converted to astaxanthin through enzymatic catalysis. This paper analyzes the relationship between astaxanthin and phytoene accumulation in carotenoid synthesis pathways under different concentrations of sodium acetate (NaAc) by high-performance liquid chromatography. The highest concentrations of phytoene and astaxanthin were observed at the NaAc concentration of 6 g l−1 on the 12th day of induction. The highest astaxanthin concentration achieved was 2.26 ± 0.28%. Therefore, we concluded that 6 g l−1 NaAc and induction for 12 d provided the optimal inducing conditions for astaxanthin accumulation in H. pluvialis. psy, pds, lcyB, β-carotene ketolase crtw, and crtz, which are genes related to phytoene and astaxanthin synthesis, were cloned and studied at the transcriptional level. crtw and crtz were continuously up-regulated since the first day of induction, while psy, pds, and lcyB were continuously up-regulated starting on the 3rd day of induction. These findings are important for enhancing our understanding of the mechanism of accumulation of phytoene and astaxanthin in H. pluvialis and provide a foundation for identifying the induction conditions necessary for optimizing astaxanthin production and increasing astaxanthin yields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1