分布式IaaS云上具有成本效益和期限约束的工作流调度的预测和进化方法

IF 0.8 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Web Services Research Pub Date : 2019-07-01 DOI:10.4018/IJWSR.2019070105
Jiangchuan Chen, Jiajia Jiang, Dan Luo
{"title":"分布式IaaS云上具有成本效益和期限约束的工作流调度的预测和进化方法","authors":"Jiangchuan Chen, Jiajia Jiang, Dan Luo","doi":"10.4018/IJWSR.2019070105","DOIUrl":null,"url":null,"abstract":"Clouds provide highly elastic resource provisioning styles through which scientific workflows are allowed to acquire desired resources ahead of the execution and build required software environment on virtual machines (VMs). However, various challenges for cloud workflow, especially its optimal scheduling, are yet to be addressed. Traditional approaches mainly consider VMs to be with non-fluctuating, time-invariant, stochastic, or bounded performance. This work describes workflows to be deployed and executed over distributed infrastructure-as-a-service clouds with time-varying performance of VMs and is aimed at reducing the execution cost of workflow while meeting deadline constraints. For this purpose, the authors employ time-series-based prediction approaches to capture dynamic performance fluctuations, feed an evolutionary algorithm with predicted performance information, and generate schedules at real-time. A case study based on multiple randomly-generated workflow templates and third-party commercial clouds shows that their proposed approach outperforms traditional ones.","PeriodicalId":54936,"journal":{"name":"International Journal of Web Services Research","volume":"7 1","pages":"78-94"},"PeriodicalIF":0.8000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Predictive and Evolutionary Approach for Cost-Effective and Deadline-Constrained Workflow Scheduling Over Distributed IaaS Clouds\",\"authors\":\"Jiangchuan Chen, Jiajia Jiang, Dan Luo\",\"doi\":\"10.4018/IJWSR.2019070105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clouds provide highly elastic resource provisioning styles through which scientific workflows are allowed to acquire desired resources ahead of the execution and build required software environment on virtual machines (VMs). However, various challenges for cloud workflow, especially its optimal scheduling, are yet to be addressed. Traditional approaches mainly consider VMs to be with non-fluctuating, time-invariant, stochastic, or bounded performance. This work describes workflows to be deployed and executed over distributed infrastructure-as-a-service clouds with time-varying performance of VMs and is aimed at reducing the execution cost of workflow while meeting deadline constraints. For this purpose, the authors employ time-series-based prediction approaches to capture dynamic performance fluctuations, feed an evolutionary algorithm with predicted performance information, and generate schedules at real-time. A case study based on multiple randomly-generated workflow templates and third-party commercial clouds shows that their proposed approach outperforms traditional ones.\",\"PeriodicalId\":54936,\"journal\":{\"name\":\"International Journal of Web Services Research\",\"volume\":\"7 1\",\"pages\":\"78-94\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Web Services Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/IJWSR.2019070105\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Web Services Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/IJWSR.2019070105","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

云提供了高度弹性的资源供应方式,通过这种方式,科学工作流可以在执行之前获取所需的资源,并在虚拟机上构建所需的软件环境。然而,云工作流面临的各种挑战,特别是其最佳调度,尚未得到解决。传统方法主要认为虚拟机具有非波动、时不变、随机或有界性能。这项工作描述了在分布式基础设施即服务云上部署和执行的工作流,这些云具有随时间变化的vm性能,旨在降低工作流的执行成本,同时满足截止日期的限制。为此,作者采用基于时间序列的预测方法来捕捉动态性能波动,为进化算法提供预测的性能信息,并实时生成调度。基于多个随机生成的工作流模板和第三方商业云的案例研究表明,他们提出的方法优于传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Predictive and Evolutionary Approach for Cost-Effective and Deadline-Constrained Workflow Scheduling Over Distributed IaaS Clouds
Clouds provide highly elastic resource provisioning styles through which scientific workflows are allowed to acquire desired resources ahead of the execution and build required software environment on virtual machines (VMs). However, various challenges for cloud workflow, especially its optimal scheduling, are yet to be addressed. Traditional approaches mainly consider VMs to be with non-fluctuating, time-invariant, stochastic, or bounded performance. This work describes workflows to be deployed and executed over distributed infrastructure-as-a-service clouds with time-varying performance of VMs and is aimed at reducing the execution cost of workflow while meeting deadline constraints. For this purpose, the authors employ time-series-based prediction approaches to capture dynamic performance fluctuations, feed an evolutionary algorithm with predicted performance information, and generate schedules at real-time. A case study based on multiple randomly-generated workflow templates and third-party commercial clouds shows that their proposed approach outperforms traditional ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Web Services Research
International Journal of Web Services Research 工程技术-计算机:软件工程
CiteScore
2.40
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: The International Journal of Web Services Research (IJWSR) is the first refereed, international publication featuring the latest research findings and industry solutions involving all aspects of Web services technology. This journal covers advancements, standards, and practices of Web services, as well as identifies emerging research topics and defines the future of Web services on grid computing, multimedia, and communication. IJWSR provides an open, formal publication for high quality articles developed by theoreticians, educators, developers, researchers, and practitioners for those desiring to stay abreast of challenges in Web services technology.
期刊最新文献
A Quasi-Newton Matrix Factorization-Based Model for Recommendation A Service Recommendation Algorithm Based on Self-Attention Mechanism and DeepFM Secure Cloud Storage and Retrieval of Personal Health Data From Smart Wearable Devices With Privacy-Preserving Techniques User Interaction Within Online Innovation Communities Research on a New Reconstruction Technology and Evaluation Method for 3D Digital Core Pore Structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1