{"title":"食物与非食物分类","authors":"F. Ragusa, V. Tomaselli, Antonino Furnari, S. Battiato, G. Farinella","doi":"10.1145/2986035.2986041","DOIUrl":null,"url":null,"abstract":"Automatic understanding of food is an important research challenge. Food recognition engines can provide a valid aid for automatically monitoring the patient's diet and food-intake habits directly from images acquired using mobile or wearable cameras. One of the first challenges in the field is the discrimination between images containing food versus the others. Existing approaches for food vs non-food classification have used both shallow and deep representations, in combination with multi-class or one-class classification approaches. However, they have been generally evaluated using different methodologies and data, making a real comparison of the performances of existing methods unfeasible. In this paper, we consider the most recent classification approaches employed for food vs non-food classification, and compare them on a publicly available dataset. Different deep-learning based representations and classification methods are considered and evaluated.","PeriodicalId":91925,"journal":{"name":"MADiMa'16 : proceedings of the 2nd International Workshop on Multimedia Assisted Dietary Management : October 16, 2016, Amsterdam, The Netherlands. International Workshop on Multimedia Assisted Dietary Management (2nd : 2016 : Amsterdam...","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Food vs Non-Food Classification\",\"authors\":\"F. Ragusa, V. Tomaselli, Antonino Furnari, S. Battiato, G. Farinella\",\"doi\":\"10.1145/2986035.2986041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic understanding of food is an important research challenge. Food recognition engines can provide a valid aid for automatically monitoring the patient's diet and food-intake habits directly from images acquired using mobile or wearable cameras. One of the first challenges in the field is the discrimination between images containing food versus the others. Existing approaches for food vs non-food classification have used both shallow and deep representations, in combination with multi-class or one-class classification approaches. However, they have been generally evaluated using different methodologies and data, making a real comparison of the performances of existing methods unfeasible. In this paper, we consider the most recent classification approaches employed for food vs non-food classification, and compare them on a publicly available dataset. Different deep-learning based representations and classification methods are considered and evaluated.\",\"PeriodicalId\":91925,\"journal\":{\"name\":\"MADiMa'16 : proceedings of the 2nd International Workshop on Multimedia Assisted Dietary Management : October 16, 2016, Amsterdam, The Netherlands. International Workshop on Multimedia Assisted Dietary Management (2nd : 2016 : Amsterdam...\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MADiMa'16 : proceedings of the 2nd International Workshop on Multimedia Assisted Dietary Management : October 16, 2016, Amsterdam, The Netherlands. International Workshop on Multimedia Assisted Dietary Management (2nd : 2016 : Amsterdam...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2986035.2986041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MADiMa'16 : proceedings of the 2nd International Workshop on Multimedia Assisted Dietary Management : October 16, 2016, Amsterdam, The Netherlands. International Workshop on Multimedia Assisted Dietary Management (2nd : 2016 : Amsterdam...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2986035.2986041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

对食物的自动理解是一个重要的研究挑战。食物识别引擎可以直接从使用移动或可穿戴相机获取的图像中自动监测患者的饮食和食物摄入习惯,为其提供有效的辅助。该领域的首要挑战之一是区分含有食物的图像与其他图像。现有的食品与非食品分类方法使用了浅表示和深表示,结合了多类或单类分类方法。然而,它们通常使用不同的方法和数据进行评估,因此无法对现有方法的性能进行真正的比较。在本文中,我们考虑了用于食品和非食品分类的最新分类方法,并在公开可用的数据集上对它们进行了比较。考虑并评估了不同的基于深度学习的表示和分类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Food vs Non-Food Classification
Automatic understanding of food is an important research challenge. Food recognition engines can provide a valid aid for automatically monitoring the patient's diet and food-intake habits directly from images acquired using mobile or wearable cameras. One of the first challenges in the field is the discrimination between images containing food versus the others. Existing approaches for food vs non-food classification have used both shallow and deep representations, in combination with multi-class or one-class classification approaches. However, they have been generally evaluated using different methodologies and data, making a real comparison of the performances of existing methods unfeasible. In this paper, we consider the most recent classification approaches employed for food vs non-food classification, and compare them on a publicly available dataset. Different deep-learning based representations and classification methods are considered and evaluated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Food Image Recognition Using Very Deep Convolutional Networks Session details: Keynote Address Innovative Technology and Dietary Assessment in Low-Income Countries GoCARB: A Smartphone Application for Automatic Assessment of Carbohydrate Intake Session details: Oral Paper Session 1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1