单分子科学的发展

M. Taniguchi
{"title":"单分子科学的发展","authors":"M. Taniguchi","doi":"10.3175/molsci.15.a0120","DOIUrl":null,"url":null,"abstract":"We reviewed the single-molecule science based on single-molecule measurements using tunneling current and ionic current as probes. Single-molecule measurements using tunneling currents can determine the number of molecules connected to a nanogap electrode. In addition, single-molecule measurements enable measuring the molecular vibration, local temperature, thermoelectric power, and electrode-molecule binding energy of a single molecule connected between electrodes. In addition, as a physical quantity, the phase information of the frontier molecular orbital of single molecules is measured. On the other hand, using an ionic current, single-molecule measurements enable highly accurate identification of a bacterium or virus that passes through a nanopore having a through-hole with a diameter of several μ m or less. Nanopores are also a stage for elucidating the flow dynamics of a single substance transported in a liquid confined in a nanospace. Single-molecule science, which is growing as a fundamental discipline, is advancing to applied research targeting biomolecules. Furthermore, the fusion of single-molecule measurements and artificial intelligence will enable data analysis methods that are different from conventional ones. It is also becoming possible to investigate the properties of a single molecule rather than the statistical average molecular behavior.","PeriodicalId":19105,"journal":{"name":"Molecular Science","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Single-Molecule Science\",\"authors\":\"M. Taniguchi\",\"doi\":\"10.3175/molsci.15.a0120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We reviewed the single-molecule science based on single-molecule measurements using tunneling current and ionic current as probes. Single-molecule measurements using tunneling currents can determine the number of molecules connected to a nanogap electrode. In addition, single-molecule measurements enable measuring the molecular vibration, local temperature, thermoelectric power, and electrode-molecule binding energy of a single molecule connected between electrodes. In addition, as a physical quantity, the phase information of the frontier molecular orbital of single molecules is measured. On the other hand, using an ionic current, single-molecule measurements enable highly accurate identification of a bacterium or virus that passes through a nanopore having a through-hole with a diameter of several μ m or less. Nanopores are also a stage for elucidating the flow dynamics of a single substance transported in a liquid confined in a nanospace. Single-molecule science, which is growing as a fundamental discipline, is advancing to applied research targeting biomolecules. Furthermore, the fusion of single-molecule measurements and artificial intelligence will enable data analysis methods that are different from conventional ones. It is also becoming possible to investigate the properties of a single molecule rather than the statistical average molecular behavior.\",\"PeriodicalId\":19105,\"journal\":{\"name\":\"Molecular Science\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3175/molsci.15.a0120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3175/molsci.15.a0120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文综述了以隧道电流和离子电流为探针的单分子测量为基础的单分子科学。使用隧道电流的单分子测量可以确定连接到纳米间隙电极的分子数量。此外,单分子测量可以测量分子振动、局部温度、热电功率和连接在电极之间的单个分子的电极-分子结合能。此外,作为物理量,测量了单分子前沿分子轨道的相信息。另一方面,使用离子电流,单分子测量可以高度准确地识别通过具有直径为几微米或更小的通孔的纳米孔的细菌或病毒。纳米孔也是解释单一物质在纳米空间内液体中传输的流动动力学的一个阶段。单分子科学作为一门基础学科正在向以生物分子为目标的应用研究方向发展。此外,单分子测量和人工智能的融合将使数据分析方法与传统方法不同。研究单个分子的性质而不是统计平均分子行为也成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of Single-Molecule Science
We reviewed the single-molecule science based on single-molecule measurements using tunneling current and ionic current as probes. Single-molecule measurements using tunneling currents can determine the number of molecules connected to a nanogap electrode. In addition, single-molecule measurements enable measuring the molecular vibration, local temperature, thermoelectric power, and electrode-molecule binding energy of a single molecule connected between electrodes. In addition, as a physical quantity, the phase information of the frontier molecular orbital of single molecules is measured. On the other hand, using an ionic current, single-molecule measurements enable highly accurate identification of a bacterium or virus that passes through a nanopore having a through-hole with a diameter of several μ m or less. Nanopores are also a stage for elucidating the flow dynamics of a single substance transported in a liquid confined in a nanospace. Single-molecule science, which is growing as a fundamental discipline, is advancing to applied research targeting biomolecules. Furthermore, the fusion of single-molecule measurements and artificial intelligence will enable data analysis methods that are different from conventional ones. It is also becoming possible to investigate the properties of a single molecule rather than the statistical average molecular behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Functional Electrochemistry based on the Strong Coupling Phenomena アト秒電子パルスの発生と電子回折への応用 接着の分子科学 分子科学的視点に基づく表面反応の理論的研究 Personal Draft of Studying Macroscopic Physical Properties as a Molecular Science: Molecular Dynamics and Internal Motional/Conformational Degrees of Freedom
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1