{"title":"单分子科学的发展","authors":"M. Taniguchi","doi":"10.3175/molsci.15.a0120","DOIUrl":null,"url":null,"abstract":"We reviewed the single-molecule science based on single-molecule measurements using tunneling current and ionic current as probes. Single-molecule measurements using tunneling currents can determine the number of molecules connected to a nanogap electrode. In addition, single-molecule measurements enable measuring the molecular vibration, local temperature, thermoelectric power, and electrode-molecule binding energy of a single molecule connected between electrodes. In addition, as a physical quantity, the phase information of the frontier molecular orbital of single molecules is measured. On the other hand, using an ionic current, single-molecule measurements enable highly accurate identification of a bacterium or virus that passes through a nanopore having a through-hole with a diameter of several μ m or less. Nanopores are also a stage for elucidating the flow dynamics of a single substance transported in a liquid confined in a nanospace. Single-molecule science, which is growing as a fundamental discipline, is advancing to applied research targeting biomolecules. Furthermore, the fusion of single-molecule measurements and artificial intelligence will enable data analysis methods that are different from conventional ones. It is also becoming possible to investigate the properties of a single molecule rather than the statistical average molecular behavior.","PeriodicalId":19105,"journal":{"name":"Molecular Science","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Single-Molecule Science\",\"authors\":\"M. Taniguchi\",\"doi\":\"10.3175/molsci.15.a0120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We reviewed the single-molecule science based on single-molecule measurements using tunneling current and ionic current as probes. Single-molecule measurements using tunneling currents can determine the number of molecules connected to a nanogap electrode. In addition, single-molecule measurements enable measuring the molecular vibration, local temperature, thermoelectric power, and electrode-molecule binding energy of a single molecule connected between electrodes. In addition, as a physical quantity, the phase information of the frontier molecular orbital of single molecules is measured. On the other hand, using an ionic current, single-molecule measurements enable highly accurate identification of a bacterium or virus that passes through a nanopore having a through-hole with a diameter of several μ m or less. Nanopores are also a stage for elucidating the flow dynamics of a single substance transported in a liquid confined in a nanospace. Single-molecule science, which is growing as a fundamental discipline, is advancing to applied research targeting biomolecules. Furthermore, the fusion of single-molecule measurements and artificial intelligence will enable data analysis methods that are different from conventional ones. It is also becoming possible to investigate the properties of a single molecule rather than the statistical average molecular behavior.\",\"PeriodicalId\":19105,\"journal\":{\"name\":\"Molecular Science\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3175/molsci.15.a0120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3175/molsci.15.a0120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We reviewed the single-molecule science based on single-molecule measurements using tunneling current and ionic current as probes. Single-molecule measurements using tunneling currents can determine the number of molecules connected to a nanogap electrode. In addition, single-molecule measurements enable measuring the molecular vibration, local temperature, thermoelectric power, and electrode-molecule binding energy of a single molecule connected between electrodes. In addition, as a physical quantity, the phase information of the frontier molecular orbital of single molecules is measured. On the other hand, using an ionic current, single-molecule measurements enable highly accurate identification of a bacterium or virus that passes through a nanopore having a through-hole with a diameter of several μ m or less. Nanopores are also a stage for elucidating the flow dynamics of a single substance transported in a liquid confined in a nanospace. Single-molecule science, which is growing as a fundamental discipline, is advancing to applied research targeting biomolecules. Furthermore, the fusion of single-molecule measurements and artificial intelligence will enable data analysis methods that are different from conventional ones. It is also becoming possible to investigate the properties of a single molecule rather than the statistical average molecular behavior.