基于聚类的纳米颗粒跟踪多分散粒度分布分析改进方法

Thorsten Wagner, M. Wiemann, I. Schmitz, H. Lipinski
{"title":"基于聚类的纳米颗粒跟踪多分散粒度分布分析改进方法","authors":"Thorsten Wagner, M. Wiemann, I. Schmitz, H. Lipinski","doi":"10.1155/2013/936150","DOIUrl":null,"url":null,"abstract":"Optical tracking methods are increasingly employed to characterize the size \nof nanoparticles in suspensions. However, the sufficient separation of different \nparticle populations in polydisperse suspension is still difficult. In this work, Nanosight measurements of well-defined particle populations and Monte-Carlo \nsimulations showed that the analysis of polydisperse particle dispersion could be \nimproved with mathematical methods. Logarithmic transform of measured hydrodynamic \ndiameters led to improved comparability between different modal values \nof multimodal size distributions. Furthermore, an automatic cluster analysis \nof transformed particle diameters could uncover otherwise hidden particle \npopulations. In summary, the combination of logarithmically transformed hydrodynamic \nparticle diameters with cluster analysis markedly improved the interpretability \nof multimodal particle size distributions as delivered by particle \ntracking measurements.","PeriodicalId":16507,"journal":{"name":"Journal of Nanoparticles","volume":"27 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Cluster-Based Method for Improving Analysis of Polydisperse Particle Size Distributions Obtained by Nanoparticle Tracking\",\"authors\":\"Thorsten Wagner, M. Wiemann, I. Schmitz, H. Lipinski\",\"doi\":\"10.1155/2013/936150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical tracking methods are increasingly employed to characterize the size \\nof nanoparticles in suspensions. However, the sufficient separation of different \\nparticle populations in polydisperse suspension is still difficult. In this work, Nanosight measurements of well-defined particle populations and Monte-Carlo \\nsimulations showed that the analysis of polydisperse particle dispersion could be \\nimproved with mathematical methods. Logarithmic transform of measured hydrodynamic \\ndiameters led to improved comparability between different modal values \\nof multimodal size distributions. Furthermore, an automatic cluster analysis \\nof transformed particle diameters could uncover otherwise hidden particle \\npopulations. In summary, the combination of logarithmically transformed hydrodynamic \\nparticle diameters with cluster analysis markedly improved the interpretability \\nof multimodal particle size distributions as delivered by particle \\ntracking measurements.\",\"PeriodicalId\":16507,\"journal\":{\"name\":\"Journal of Nanoparticles\",\"volume\":\"27 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanoparticles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/936150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/936150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

光学跟踪方法越来越多地用于表征悬浮液中纳米颗粒的大小。然而,多分散悬浮液中不同粒子群的充分分离仍然是一个难题。在这项工作中,纳米视觉测量明确定义的粒子群和蒙特卡罗模拟表明,多分散粒子的分散分析可以用数学方法改进。对实测水动力直径进行对数变换,提高了多模态尺寸分布的不同模态值之间的可比性。此外,转换后的粒子直径的自动聚类分析可以发现其他隐藏的粒子种群。总之,对数转换的水动力颗粒直径与聚类分析的结合显著提高了由颗粒跟踪测量提供的多模态粒径分布的可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Cluster-Based Method for Improving Analysis of Polydisperse Particle Size Distributions Obtained by Nanoparticle Tracking
Optical tracking methods are increasingly employed to characterize the size of nanoparticles in suspensions. However, the sufficient separation of different particle populations in polydisperse suspension is still difficult. In this work, Nanosight measurements of well-defined particle populations and Monte-Carlo simulations showed that the analysis of polydisperse particle dispersion could be improved with mathematical methods. Logarithmic transform of measured hydrodynamic diameters led to improved comparability between different modal values of multimodal size distributions. Furthermore, an automatic cluster analysis of transformed particle diameters could uncover otherwise hidden particle populations. In summary, the combination of logarithmically transformed hydrodynamic particle diameters with cluster analysis markedly improved the interpretability of multimodal particle size distributions as delivered by particle tracking measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesis and Investigation of Antimicrobial Activity of Cu2O Nanoparticles/Zeolite Synthesis and Characterization of Cockle Shell-Based Calcium Carbonate Aragonite Polymorph Nanoparticles with Surface Functionalization Dispersion of Titanium Oxide Nanoparticles in Aqueous Solution with Anionic Stabilizer via Ultrasonic Wave Effect of Uniformly and Nonuniformly Coated Al2O3 Nanoparticles over Glass Tube Heater on Pool Boiling Vitis vinifera Assisted Silver Nanoparticles with Antibacterial and Antiproliferative Activity against Ehrlich Ascites Carcinoma Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1