Miao Pan, Q-F Sun, Chaowei Li, Ruiqing Tai, Xin’e Shi, Chao Sun
{"title":"在小鼠中,HOXA5通过转录调控Ccne1和阻断JAK2/STAT3信号通路抑制脂肪细胞增殖。","authors":"Miao Pan, Q-F Sun, Chaowei Li, Ruiqing Tai, Xin’e Shi, Chao Sun","doi":"10.1139/bcb-2021-0558","DOIUrl":null,"url":null,"abstract":"The highly regulated proliferation of adipocytes plays a momentous role in fat development and obesity. Hoxa5 is an important member of Hox family, its encoded protein is an important transcription factor related to development. And its differential expression in different adipose tissues seems to indicate that Hoxa5 may be involved in the regulation of adipocyte proliferation. In order to evaluate the regulation mechanism of Hoxa5 on adipocyte proliferation, we constructed a variety of Hoxa5 expression vectors in vivo and in vitro to explore its mechanism on adipocyte proliferation and its potential impact on obesity. We have observed that the overexpression of Hoxa5 strongly reduces cell counts, and Hoxa5 can inhibit cell proliferation and block cell cycle progression by regulating the expression of genes such as Cyclin E, Cycling D1 and p53. Most importantly, we demonstrated that Hoxa5 exerts its effect by regulating the signaling pathway of Janus kinase 2 (JAK2) signal transduction and transcription 3 (STAT3) activator, as well as binding to the promoter region of Ccne1 and inhibiting the transcription of Ccne1.This study provides an in-depth understanding of the potential molecular mechanism of Hoxa5 inhibiting adipocyte proliferation. Our results suggest the importance of Hoxa5 in the treatment of obesity.","PeriodicalId":9524,"journal":{"name":"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"HOXA5 inhibits adipocytes proliferation through transcriptional regulation of Ccne1 and blocking JAK2/STAT3 signaling pathway in mice.\",\"authors\":\"Miao Pan, Q-F Sun, Chaowei Li, Ruiqing Tai, Xin’e Shi, Chao Sun\",\"doi\":\"10.1139/bcb-2021-0558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The highly regulated proliferation of adipocytes plays a momentous role in fat development and obesity. Hoxa5 is an important member of Hox family, its encoded protein is an important transcription factor related to development. And its differential expression in different adipose tissues seems to indicate that Hoxa5 may be involved in the regulation of adipocyte proliferation. In order to evaluate the regulation mechanism of Hoxa5 on adipocyte proliferation, we constructed a variety of Hoxa5 expression vectors in vivo and in vitro to explore its mechanism on adipocyte proliferation and its potential impact on obesity. We have observed that the overexpression of Hoxa5 strongly reduces cell counts, and Hoxa5 can inhibit cell proliferation and block cell cycle progression by regulating the expression of genes such as Cyclin E, Cycling D1 and p53. Most importantly, we demonstrated that Hoxa5 exerts its effect by regulating the signaling pathway of Janus kinase 2 (JAK2) signal transduction and transcription 3 (STAT3) activator, as well as binding to the promoter region of Ccne1 and inhibiting the transcription of Ccne1.This study provides an in-depth understanding of the potential molecular mechanism of Hoxa5 inhibiting adipocyte proliferation. Our results suggest the importance of Hoxa5 in the treatment of obesity.\",\"PeriodicalId\":9524,\"journal\":{\"name\":\"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/bcb-2021-0558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/bcb-2021-0558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
HOXA5 inhibits adipocytes proliferation through transcriptional regulation of Ccne1 and blocking JAK2/STAT3 signaling pathway in mice.
The highly regulated proliferation of adipocytes plays a momentous role in fat development and obesity. Hoxa5 is an important member of Hox family, its encoded protein is an important transcription factor related to development. And its differential expression in different adipose tissues seems to indicate that Hoxa5 may be involved in the regulation of adipocyte proliferation. In order to evaluate the regulation mechanism of Hoxa5 on adipocyte proliferation, we constructed a variety of Hoxa5 expression vectors in vivo and in vitro to explore its mechanism on adipocyte proliferation and its potential impact on obesity. We have observed that the overexpression of Hoxa5 strongly reduces cell counts, and Hoxa5 can inhibit cell proliferation and block cell cycle progression by regulating the expression of genes such as Cyclin E, Cycling D1 and p53. Most importantly, we demonstrated that Hoxa5 exerts its effect by regulating the signaling pathway of Janus kinase 2 (JAK2) signal transduction and transcription 3 (STAT3) activator, as well as binding to the promoter region of Ccne1 and inhibiting the transcription of Ccne1.This study provides an in-depth understanding of the potential molecular mechanism of Hoxa5 inhibiting adipocyte proliferation. Our results suggest the importance of Hoxa5 in the treatment of obesity.