1900 - 2015年1℃格网准全球年降水量的多元回归重建

IF 0.5 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Advances in Data Science and Adaptive Analysis Pub Date : 2018-10-01 DOI:10.1142/S2424922X18500080
L. Lämmlein, S. Shen
{"title":"1900 - 2015年1℃格网准全球年降水量的多元回归重建","authors":"L. Lämmlein, S. Shen","doi":"10.1142/S2424922X18500080","DOIUrl":null,"url":null,"abstract":"This paper presents a multivariate linear regression reconstruction for the near-global annual precipitation anomalies with 1-deg latitude–longitude resolution from 1900 to 2015. The regression’s explanatory variables are the empirical orthogonal functions (EOFs), computed from the Global Precipitation Climatology Project (GPCP) dataset. The data for the regression’s dependent variable are from the station dataset of the Global Historical Climatology Network (GHCN). The data for the explanatory variables are the EOF data at the GHCN data locations. Compared to the earlier work of reconstruction at [Formula: see text] latitude–longitude resolution, our current reconstruction has two contributions. First, the spatial resolution is reduced to [Formula: see text] latitude–longitude. The finer resolution allows the data to be more useful in applications, such as historical drought assessment for a given region. Second, the multivariate regression is directly computed from linear regression models and hence includes the intercept term, which is not a coefficient of an EOF. The intercept enables a more realistic detection of the long-term trend of the spatial average. The trend of the global average annual precipitation from 1900 to 2015 is 0.133 (mm/day)/100a for the reconstruction with an intercept, and is 0.022 (mm/day)/100a without an intercept. The latter agrees with the trends of other models. The reconstruction error is assessed by a time-varying standard deviation.","PeriodicalId":47145,"journal":{"name":"Advances in Data Science and Adaptive Analysis","volume":"25 1","pages":"1850008:1-1850008:17"},"PeriodicalIF":0.5000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Multivariate Regression Reconstruction of the Quasi-Global Annual Precipitation on 1-Deg Grid From 1900 To 2015\",\"authors\":\"L. Lämmlein, S. Shen\",\"doi\":\"10.1142/S2424922X18500080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a multivariate linear regression reconstruction for the near-global annual precipitation anomalies with 1-deg latitude–longitude resolution from 1900 to 2015. The regression’s explanatory variables are the empirical orthogonal functions (EOFs), computed from the Global Precipitation Climatology Project (GPCP) dataset. The data for the regression’s dependent variable are from the station dataset of the Global Historical Climatology Network (GHCN). The data for the explanatory variables are the EOF data at the GHCN data locations. Compared to the earlier work of reconstruction at [Formula: see text] latitude–longitude resolution, our current reconstruction has two contributions. First, the spatial resolution is reduced to [Formula: see text] latitude–longitude. The finer resolution allows the data to be more useful in applications, such as historical drought assessment for a given region. Second, the multivariate regression is directly computed from linear regression models and hence includes the intercept term, which is not a coefficient of an EOF. The intercept enables a more realistic detection of the long-term trend of the spatial average. The trend of the global average annual precipitation from 1900 to 2015 is 0.133 (mm/day)/100a for the reconstruction with an intercept, and is 0.022 (mm/day)/100a without an intercept. The latter agrees with the trends of other models. The reconstruction error is assessed by a time-varying standard deviation.\",\"PeriodicalId\":47145,\"journal\":{\"name\":\"Advances in Data Science and Adaptive Analysis\",\"volume\":\"25 1\",\"pages\":\"1850008:1-1850008:17\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Data Science and Adaptive Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S2424922X18500080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Science and Adaptive Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2424922X18500080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3

摘要

本文对1900 - 2015年近全球年降水距平进行了多元线性回归重建,分辨率为经纬度1度。回归的解释变量是经验正交函数(EOFs),由全球降水气候学项目(GPCP)数据集计算得出。回归的因变量数据来自全球历史气候网络(GHCN)的站点数据集。解释变量的数据是GHCN数据位置的EOF数据。与先前在纬度-经度分辨率下的重建工作相比,我们目前的重建有两个贡献。首先,空间分辨率被简化为[公式:见文本]经纬度。更精细的分辨率使数据在应用中更有用,例如对给定地区的历史干旱评估。其次,多元回归是直接从线性回归模型中计算出来的,因此包含了截距项,它不是EOF的系数。截距可以更真实地探测到空间平均值的长期趋势。1900—2015年全球平均年降水量的变化趋势在有截距重建时为0.133 (mm/day)/100a,在无截距重建时为0.022 (mm/day)/100a。后者与其他模型的趋势一致。重构误差由时变标准差评定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Multivariate Regression Reconstruction of the Quasi-Global Annual Precipitation on 1-Deg Grid From 1900 To 2015
This paper presents a multivariate linear regression reconstruction for the near-global annual precipitation anomalies with 1-deg latitude–longitude resolution from 1900 to 2015. The regression’s explanatory variables are the empirical orthogonal functions (EOFs), computed from the Global Precipitation Climatology Project (GPCP) dataset. The data for the regression’s dependent variable are from the station dataset of the Global Historical Climatology Network (GHCN). The data for the explanatory variables are the EOF data at the GHCN data locations. Compared to the earlier work of reconstruction at [Formula: see text] latitude–longitude resolution, our current reconstruction has two contributions. First, the spatial resolution is reduced to [Formula: see text] latitude–longitude. The finer resolution allows the data to be more useful in applications, such as historical drought assessment for a given region. Second, the multivariate regression is directly computed from linear regression models and hence includes the intercept term, which is not a coefficient of an EOF. The intercept enables a more realistic detection of the long-term trend of the spatial average. The trend of the global average annual precipitation from 1900 to 2015 is 0.133 (mm/day)/100a for the reconstruction with an intercept, and is 0.022 (mm/day)/100a without an intercept. The latter agrees with the trends of other models. The reconstruction error is assessed by a time-varying standard deviation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Data Science and Adaptive Analysis
Advances in Data Science and Adaptive Analysis MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
0.00%
发文量
13
期刊最新文献
Assessment Of Mars Analog Habitation Plans Using Network Analysis Methodologies A Novel Genetic-Inspired Binary Firefly Algorithm for Feature Selection in the Prediction of Cervical Cancer Big Data Analytics for Predictive System Maintenance Using Machine Learning Models Data Mining for Estimating the Impact of Physical Activity Levels on the Health-Related Well-Being A Novel Autoencoder Deep Architecture for Detecting the Outlier in Heterogeneous Data Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1