{"title":"封堵OMARS设计和最终筛分设计","authors":"José Núñez Ares, P. Goos","doi":"10.1080/00224065.2023.2196035","DOIUrl":null,"url":null,"abstract":"Abstract The family of orthogonal minimally aliased response surface or OMARS designs comprises traditional response surface designs, such as central composite designs and Box-Behnken designs, as well as definitive screening designs. Key features of OMARS designs are the facts that they are orthogonal for the main effects and that the main effects are not at all aliased with any two-factor interaction effect or with any quadratic effect. In this article, we present a method to arrange the runs of an OMARS design in blocks of equal size, so that the main effects can be estimated independently from the blocks, and the interaction effects and the quadratic effects are confounded as little as possible with the blocks. We show that our new method for blocking OMARS designs offers much flexibility when it comes to choosing the number of runs, the number of blocks and the block sizes, and that it often outperforms the blocking arrangements of definitive screening designs available in the literature and in commercial software.","PeriodicalId":54769,"journal":{"name":"Journal of Quality Technology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blocking OMARS designs and definitive screening designs\",\"authors\":\"José Núñez Ares, P. Goos\",\"doi\":\"10.1080/00224065.2023.2196035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The family of orthogonal minimally aliased response surface or OMARS designs comprises traditional response surface designs, such as central composite designs and Box-Behnken designs, as well as definitive screening designs. Key features of OMARS designs are the facts that they are orthogonal for the main effects and that the main effects are not at all aliased with any two-factor interaction effect or with any quadratic effect. In this article, we present a method to arrange the runs of an OMARS design in blocks of equal size, so that the main effects can be estimated independently from the blocks, and the interaction effects and the quadratic effects are confounded as little as possible with the blocks. We show that our new method for blocking OMARS designs offers much flexibility when it comes to choosing the number of runs, the number of blocks and the block sizes, and that it often outperforms the blocking arrangements of definitive screening designs available in the literature and in commercial software.\",\"PeriodicalId\":54769,\"journal\":{\"name\":\"Journal of Quality Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quality Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/00224065.2023.2196035\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quality Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00224065.2023.2196035","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Blocking OMARS designs and definitive screening designs
Abstract The family of orthogonal minimally aliased response surface or OMARS designs comprises traditional response surface designs, such as central composite designs and Box-Behnken designs, as well as definitive screening designs. Key features of OMARS designs are the facts that they are orthogonal for the main effects and that the main effects are not at all aliased with any two-factor interaction effect or with any quadratic effect. In this article, we present a method to arrange the runs of an OMARS design in blocks of equal size, so that the main effects can be estimated independently from the blocks, and the interaction effects and the quadratic effects are confounded as little as possible with the blocks. We show that our new method for blocking OMARS designs offers much flexibility when it comes to choosing the number of runs, the number of blocks and the block sizes, and that it often outperforms the blocking arrangements of definitive screening designs available in the literature and in commercial software.
期刊介绍:
The objective of Journal of Quality Technology is to contribute to the technical advancement of the field of quality technology by publishing papers that emphasize the practical applicability of new techniques, instructive examples of the operation of existing techniques and results of historical researches. Expository, review, and tutorial papers are also acceptable if they are written in a style suitable for practicing engineers.
Sample our Mathematics & Statistics journals, sign in here to start your FREE access for 14 days