D. Porto, Lisiane Bajerski, M. D. Malesuik, J. B. Azeredo, F. R. Paula, C. S. Paim
{"title":"Luliconazole:稳定性指示的LC方法,主要降解产物的HRMS结构解析和硅研究","authors":"D. Porto, Lisiane Bajerski, M. D. Malesuik, J. B. Azeredo, F. R. Paula, C. S. Paim","doi":"10.15446/RCCIQUIFA.V50N1.89717","DOIUrl":null,"url":null,"abstract":"Aim: A new stability-indicating liquid chromatography method was developed and validated for the quantitative determination of luliconazole. Materials and methods: Preliminary forced degradation study demonstrated an additional peak of the degradation product at the same retention time to the drug, due to this, the method was developed optimizing the chromatographic conditions to provide sufficient peak resolution (R ≥ 2). The experimental design was evaluated to assess the robustness and the best chromatographic conditions to be used for the validation. Methodology: Luliconazole solutions were exposed to various stress conditions to evaluate the method indication stability, in which the degradation product (DP-1) formed was isolated, identified, and evaluated in silico to predict degradation pathway and toxicity. The procedure was validated by robustness, selectivity, linearity, precision, and accuracy. Liquid chromatography was performed in a Phenomenex® RP-18 column with a mixture of acetonitrile and 0.3% (v/v) triethylamine solution as a mobile phase in isocratic elution. Results and conclusions: The method demonstrated robustness, good recovery, precision, linear response over a range from 5.0 to 40.0 μg.mL-1, and to be stability indicating. The alkaline stress condition resulted in the formation of DP-1. hrms studies identified this product as an hydroxyacetamide derivative, and in silico studies did not show toxic potential.","PeriodicalId":21220,"journal":{"name":"Revista Colombiana de Ciencias Químico-Farmacéuticas","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Luliconazole: Stability-indicating LC method, structural elucidation of major degradation product by HRMS and in silico studies\",\"authors\":\"D. Porto, Lisiane Bajerski, M. D. Malesuik, J. B. Azeredo, F. R. Paula, C. S. Paim\",\"doi\":\"10.15446/RCCIQUIFA.V50N1.89717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aim: A new stability-indicating liquid chromatography method was developed and validated for the quantitative determination of luliconazole. Materials and methods: Preliminary forced degradation study demonstrated an additional peak of the degradation product at the same retention time to the drug, due to this, the method was developed optimizing the chromatographic conditions to provide sufficient peak resolution (R ≥ 2). The experimental design was evaluated to assess the robustness and the best chromatographic conditions to be used for the validation. Methodology: Luliconazole solutions were exposed to various stress conditions to evaluate the method indication stability, in which the degradation product (DP-1) formed was isolated, identified, and evaluated in silico to predict degradation pathway and toxicity. The procedure was validated by robustness, selectivity, linearity, precision, and accuracy. Liquid chromatography was performed in a Phenomenex® RP-18 column with a mixture of acetonitrile and 0.3% (v/v) triethylamine solution as a mobile phase in isocratic elution. Results and conclusions: The method demonstrated robustness, good recovery, precision, linear response over a range from 5.0 to 40.0 μg.mL-1, and to be stability indicating. The alkaline stress condition resulted in the formation of DP-1. hrms studies identified this product as an hydroxyacetamide derivative, and in silico studies did not show toxic potential.\",\"PeriodicalId\":21220,\"journal\":{\"name\":\"Revista Colombiana de Ciencias Químico-Farmacéuticas\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Colombiana de Ciencias Químico-Farmacéuticas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15446/RCCIQUIFA.V50N1.89717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana de Ciencias Químico-Farmacéuticas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/RCCIQUIFA.V50N1.89717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Luliconazole: Stability-indicating LC method, structural elucidation of major degradation product by HRMS and in silico studies
Aim: A new stability-indicating liquid chromatography method was developed and validated for the quantitative determination of luliconazole. Materials and methods: Preliminary forced degradation study demonstrated an additional peak of the degradation product at the same retention time to the drug, due to this, the method was developed optimizing the chromatographic conditions to provide sufficient peak resolution (R ≥ 2). The experimental design was evaluated to assess the robustness and the best chromatographic conditions to be used for the validation. Methodology: Luliconazole solutions were exposed to various stress conditions to evaluate the method indication stability, in which the degradation product (DP-1) formed was isolated, identified, and evaluated in silico to predict degradation pathway and toxicity. The procedure was validated by robustness, selectivity, linearity, precision, and accuracy. Liquid chromatography was performed in a Phenomenex® RP-18 column with a mixture of acetonitrile and 0.3% (v/v) triethylamine solution as a mobile phase in isocratic elution. Results and conclusions: The method demonstrated robustness, good recovery, precision, linear response over a range from 5.0 to 40.0 μg.mL-1, and to be stability indicating. The alkaline stress condition resulted in the formation of DP-1. hrms studies identified this product as an hydroxyacetamide derivative, and in silico studies did not show toxic potential.