UKF算法改进及鲁棒性研究

Zhongkai Mou, L. Sui
{"title":"UKF算法改进及鲁棒性研究","authors":"Zhongkai Mou, L. Sui","doi":"10.1109/IWISA.2009.5072908","DOIUrl":null,"url":null,"abstract":"Iterated unscented Kalman filter (IUKF) algorithm has improved the unscented Kalman filter (UKF) and enhanced the performance of filter estimation by using Newton-Raphson iterative equation. This paper improves IUKF algorithm ulteriorly after detailedly analyzing principle of IUKF and its iterative equation, and proposes a new filtering algorithm with robustness-Improved IUKF. Then the performance of the new algorithm is validated by two experiments. The results show that the improved IUKF is more robust which can effectively resist the influence of measurement outlier.","PeriodicalId":6327,"journal":{"name":"2009 International Workshop on Intelligent Systems and Applications","volume":"10 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Improvement of UKF Algorithm and Robustness Study\",\"authors\":\"Zhongkai Mou, L. Sui\",\"doi\":\"10.1109/IWISA.2009.5072908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Iterated unscented Kalman filter (IUKF) algorithm has improved the unscented Kalman filter (UKF) and enhanced the performance of filter estimation by using Newton-Raphson iterative equation. This paper improves IUKF algorithm ulteriorly after detailedly analyzing principle of IUKF and its iterative equation, and proposes a new filtering algorithm with robustness-Improved IUKF. Then the performance of the new algorithm is validated by two experiments. The results show that the improved IUKF is more robust which can effectively resist the influence of measurement outlier.\",\"PeriodicalId\":6327,\"journal\":{\"name\":\"2009 International Workshop on Intelligent Systems and Applications\",\"volume\":\"10 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Workshop on Intelligent Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWISA.2009.5072908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Workshop on Intelligent Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWISA.2009.5072908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

迭代无气味卡尔曼滤波器(IUKF)算法是对无气味卡尔曼滤波器(UKF)的改进,利用牛顿-拉夫森迭代方程提高了滤波器估计的性能。本文在详细分析了IUKF的原理及其迭代方程的基础上,对IUKF算法进行了进一步改进,提出了一种新的具有鲁棒性的滤波算法——改进的IUKF。然后通过两个实验验证了新算法的性能。结果表明,改进后的IUKF具有更强的鲁棒性,能够有效抵抗测量异常值的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improvement of UKF Algorithm and Robustness Study
Iterated unscented Kalman filter (IUKF) algorithm has improved the unscented Kalman filter (UKF) and enhanced the performance of filter estimation by using Newton-Raphson iterative equation. This paper improves IUKF algorithm ulteriorly after detailedly analyzing principle of IUKF and its iterative equation, and proposes a new filtering algorithm with robustness-Improved IUKF. Then the performance of the new algorithm is validated by two experiments. The results show that the improved IUKF is more robust which can effectively resist the influence of measurement outlier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent Systems and Applications: Select Proceedings of ICISA 2022 Selecting Accurate Classifier Models for a MERS-CoV Dataset A Method of Same Frequency Interference Elimination Based on Adaptive Notch Filter Research on Work-in-Progress Control System of Integrating PI and SPC Study on A Novel Fuzzy PLL and Its Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1