基于微多普勒特征的直升机识别与分类

S. Iswariya, J. Valarmathi
{"title":"基于微多普勒特征的直升机识别与分类","authors":"S. Iswariya, J. Valarmathi","doi":"10.46300/9108.2021.15.4","DOIUrl":null,"url":null,"abstract":"This paper focuses on identification of helicopter by exploiting the concept of micro-Doppler effect which is prominent in targets containing rotating, oscillating or vibrating parts in it. Radar received signal is analyzed by Short Time Fourier Transform (STFT) to extract the micro Doppler (mD) signature. From the mD signature, the helicopter parameters are estimated. In a multiple helicopters scenario, estimated parameters will be a mixure, pertaining to the multiple helicopters. These parameters are classified further using a machine learning algorithm, namely k-means clustering to classify the helicopters. Simulated results for the synthesized received signal shows the betted estimates of the helicopter parameter through mD signature. Dataset containing basic parameters like number of blades, blade length and rotational rates of the UN-1N helicopter (rotor with 2 blades), the SH-3H helicopter (rotor with 5 blades) and the CH-54B helicopter (rotor with 6 blades) are considered for the classification. Results show a good classification. When analysed with different SNR level in dataset, at lower SNR, observed some ovelapping in the classification.","PeriodicalId":89779,"journal":{"name":"International journal of computers in healthcare","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Micro-Doppler Signature Based Helicopter Identification and Classification Through Machine Learning\",\"authors\":\"S. Iswariya, J. Valarmathi\",\"doi\":\"10.46300/9108.2021.15.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on identification of helicopter by exploiting the concept of micro-Doppler effect which is prominent in targets containing rotating, oscillating or vibrating parts in it. Radar received signal is analyzed by Short Time Fourier Transform (STFT) to extract the micro Doppler (mD) signature. From the mD signature, the helicopter parameters are estimated. In a multiple helicopters scenario, estimated parameters will be a mixure, pertaining to the multiple helicopters. These parameters are classified further using a machine learning algorithm, namely k-means clustering to classify the helicopters. Simulated results for the synthesized received signal shows the betted estimates of the helicopter parameter through mD signature. Dataset containing basic parameters like number of blades, blade length and rotational rates of the UN-1N helicopter (rotor with 2 blades), the SH-3H helicopter (rotor with 5 blades) and the CH-54B helicopter (rotor with 6 blades) are considered for the classification. Results show a good classification. When analysed with different SNR level in dataset, at lower SNR, observed some ovelapping in the classification.\",\"PeriodicalId\":89779,\"journal\":{\"name\":\"International journal of computers in healthcare\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of computers in healthcare\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46300/9108.2021.15.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of computers in healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46300/9108.2021.15.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文主要利用微多普勒效应的概念对直升机进行识别。微多普勒效应在直升机中含有旋转、振荡或振动部件的目标中尤为突出。利用短时傅里叶变换(STFT)对雷达接收信号进行分析,提取微多普勒(mD)特征。根据mD特征,估计直升机参数。在多架直升机的场景中,估计参数将是一个与多架直升机相关的混合物。这些参数进一步使用机器学习算法进行分类,即k-means聚类对直升机进行分类。对综合接收信号的仿真结果表明,利用mD特征对直升机参数进行了较好的估计。数据集包含UN-1N直升机(2片桨叶旋翼)、SH-3H直升机(5片桨叶旋翼)和CH-54B直升机(6片桨叶旋翼)的基本参数,如叶片数量、叶片长度和转速。结果表明分类效果良好。在对数据集进行不同信噪比分析时,在较低的信噪比下,分类中存在一定的重叠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Micro-Doppler Signature Based Helicopter Identification and Classification Through Machine Learning
This paper focuses on identification of helicopter by exploiting the concept of micro-Doppler effect which is prominent in targets containing rotating, oscillating or vibrating parts in it. Radar received signal is analyzed by Short Time Fourier Transform (STFT) to extract the micro Doppler (mD) signature. From the mD signature, the helicopter parameters are estimated. In a multiple helicopters scenario, estimated parameters will be a mixure, pertaining to the multiple helicopters. These parameters are classified further using a machine learning algorithm, namely k-means clustering to classify the helicopters. Simulated results for the synthesized received signal shows the betted estimates of the helicopter parameter through mD signature. Dataset containing basic parameters like number of blades, blade length and rotational rates of the UN-1N helicopter (rotor with 2 blades), the SH-3H helicopter (rotor with 5 blades) and the CH-54B helicopter (rotor with 6 blades) are considered for the classification. Results show a good classification. When analysed with different SNR level in dataset, at lower SNR, observed some ovelapping in the classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Hybrid Mechanism for Generation of Pseudo-random Sequences for Data Protection Purposes Human Emotion Identification from Speech using Neural Network Enhancing IoT Communication using African Buffalo Delay Tolerant and Risk Packet Jump Approach Heterogeneous IoT platform in Network Architecture Population Pharmacokinetics/PD Modelling: a Systematic Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1