对巴东地区降雨的预测使用了短期记忆的方法

Brando Dharma Saputra, Lely Hiryanto, Teny Handhayani
{"title":"对巴东地区降雨的预测使用了短期记忆的方法","authors":"Brando Dharma Saputra, Lely Hiryanto, Teny Handhayani","doi":"10.24912/jiksi.v11i2.26002","DOIUrl":null,"url":null,"abstract":"Rainfall is the height of rainwater that falls on a flat area, assuming it doesn't evaporate, doesn't seep, and doesn't flow. Rain levels are measured in mm (millimeters). The target of the research being conducted is in Badung Regency, Bali because Bali is a tourist area that is often visited by tourists and from Indonesian itself, so predictions of meteorology, such as rainfall will greatly impact tourism. In this test, predictions use the Long Short Term Memory (LSTM) method, using daily weather data from the BMKG from 2010 to 2020 as training data and daily weather data for 2021 as prediction data. Based on the test results above, the results show that the two LSTM tests with LSTM Model 128.64 and LSTM Model 64.32 have low MAE and MAPE error values. From First Scenario, the Mean Absolute Error (MAE) value is 8.97246598930908 and Mean Absolute Percentage Error (MAPE) value is 1.7657206683278308%. From Second Scenario, the Mean Absolute Error is 9.706669940783014 and Mean Absolute Percentage Error is 1.9028466692362323%. From the MAE and MAPE values obtained in these two scenarios, it can be proven that from the evaluation results of Rainfall predictions in Badung Regency, Bali, the predictions can be said to be very accurate because they have an error value of less than 10.","PeriodicalId":34309,"journal":{"name":"Jurnal Sisfokom","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PREDIKSI CURAH HUJAN DI KABUPATEN BADUNG, BALI MENGGUNAKAN METODE LONG SHORT-TERM MEMORY\",\"authors\":\"Brando Dharma Saputra, Lely Hiryanto, Teny Handhayani\",\"doi\":\"10.24912/jiksi.v11i2.26002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rainfall is the height of rainwater that falls on a flat area, assuming it doesn't evaporate, doesn't seep, and doesn't flow. Rain levels are measured in mm (millimeters). The target of the research being conducted is in Badung Regency, Bali because Bali is a tourist area that is often visited by tourists and from Indonesian itself, so predictions of meteorology, such as rainfall will greatly impact tourism. In this test, predictions use the Long Short Term Memory (LSTM) method, using daily weather data from the BMKG from 2010 to 2020 as training data and daily weather data for 2021 as prediction data. Based on the test results above, the results show that the two LSTM tests with LSTM Model 128.64 and LSTM Model 64.32 have low MAE and MAPE error values. From First Scenario, the Mean Absolute Error (MAE) value is 8.97246598930908 and Mean Absolute Percentage Error (MAPE) value is 1.7657206683278308%. From Second Scenario, the Mean Absolute Error is 9.706669940783014 and Mean Absolute Percentage Error is 1.9028466692362323%. From the MAE and MAPE values obtained in these two scenarios, it can be proven that from the evaluation results of Rainfall predictions in Badung Regency, Bali, the predictions can be said to be very accurate because they have an error value of less than 10.\",\"PeriodicalId\":34309,\"journal\":{\"name\":\"Jurnal Sisfokom\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Sisfokom\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24912/jiksi.v11i2.26002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Sisfokom","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24912/jiksi.v11i2.26002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

降雨是落在平坦地区的雨水的高度,假设它不蒸发,不渗漏,也不流动。降雨量以毫米为单位。正在进行的研究的目标是巴厘的巴东摄政,因为巴厘是一个旅游区,经常有来自印度尼西亚的游客访问,所以气象的预测,如降雨将极大地影响旅游业。在本次测试中,预测使用长短期记忆(LSTM)方法,使用BMKG 2010年至2020年的每日天气数据作为训练数据,2021年的每日天气数据作为预测数据。综合以上测试结果,结果表明LSTM模型128.64和LSTM模型64.32的两个LSTM测试具有较低的MAE和MAPE误差值。从第一个场景来看,平均绝对误差(MAE)值为8.97246598930908,平均绝对百分比误差(MAPE)值为1.7657206683278308%。从第二个场景来看,平均绝对误差为9.706669940783014,平均绝对百分比误差为1.9028466692362323%。从这两种情景下得到的MAE和MAPE值可以证明,从巴厘巴东摄政降水预测的评价结果来看,预测的误差值小于10,可以说是非常准确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PREDIKSI CURAH HUJAN DI KABUPATEN BADUNG, BALI MENGGUNAKAN METODE LONG SHORT-TERM MEMORY
Rainfall is the height of rainwater that falls on a flat area, assuming it doesn't evaporate, doesn't seep, and doesn't flow. Rain levels are measured in mm (millimeters). The target of the research being conducted is in Badung Regency, Bali because Bali is a tourist area that is often visited by tourists and from Indonesian itself, so predictions of meteorology, such as rainfall will greatly impact tourism. In this test, predictions use the Long Short Term Memory (LSTM) method, using daily weather data from the BMKG from 2010 to 2020 as training data and daily weather data for 2021 as prediction data. Based on the test results above, the results show that the two LSTM tests with LSTM Model 128.64 and LSTM Model 64.32 have low MAE and MAPE error values. From First Scenario, the Mean Absolute Error (MAE) value is 8.97246598930908 and Mean Absolute Percentage Error (MAPE) value is 1.7657206683278308%. From Second Scenario, the Mean Absolute Error is 9.706669940783014 and Mean Absolute Percentage Error is 1.9028466692362323%. From the MAE and MAPE values obtained in these two scenarios, it can be proven that from the evaluation results of Rainfall predictions in Badung Regency, Bali, the predictions can be said to be very accurate because they have an error value of less than 10.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
40
审稿时长
8 weeks
期刊最新文献
Identifying Credit Card Fraud in Illegal Transactions Using Random Forest and Decision Tree Algorithms Determining Scholarship Recipients at STIT Prabumulih Using the AHP Method Determining Promotional Package Recommendations Using the Frequent Pattern Growth Algorithm at The Java Cafe Systematic Literature Review: Machine Learning Methods in Emotion Classification in Textual Data Heart Chamber Segmentation in Cardiomegaly Conditions Using the CNN Method with U-Net Architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1