不同电极阵列地电数据集的协同反演

D. T. Kieu, T. Truong
{"title":"不同电极阵列地电数据集的协同反演","authors":"D. T. Kieu, T. Truong","doi":"10.1080/22020586.2019.12073100","DOIUrl":null,"url":null,"abstract":"Summary Direct current resistivity (DCR) method is one of the most commonly applied geophysical exploration methods. The development of data acquisition techniques enables the acquisition of multiple data sets of various electrode arrays with a little extra measurement time in comparison with the time that needs to install the system. Accordingly, the data processor is required to utilise as much as possible useful information to build a more reliable geoelectrical model. This study aims to test using the co-operative inversion process to the multiple data sets of various electrode configurations. We use a synthetic model with the most common electrode arrays: Wenner-Schlumberger (WS), Dipole-Dipole (DD), Pole-Dipole (PD) and Pole-Pole to investigate the possibility of the co-operative inversion schemes. The results show that the co-operative inversion of the combined data sets is better than the inversion of the individual ones. The order of inversion for each data set can produce different results. Fuzzy c-means constraint may assist the inversion to produce better results.","PeriodicalId":8502,"journal":{"name":"ASEG Extended Abstracts","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Co-operative inversion of geoelectrical data sets acquired from different electrode arrays\",\"authors\":\"D. T. Kieu, T. Truong\",\"doi\":\"10.1080/22020586.2019.12073100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Direct current resistivity (DCR) method is one of the most commonly applied geophysical exploration methods. The development of data acquisition techniques enables the acquisition of multiple data sets of various electrode arrays with a little extra measurement time in comparison with the time that needs to install the system. Accordingly, the data processor is required to utilise as much as possible useful information to build a more reliable geoelectrical model. This study aims to test using the co-operative inversion process to the multiple data sets of various electrode configurations. We use a synthetic model with the most common electrode arrays: Wenner-Schlumberger (WS), Dipole-Dipole (DD), Pole-Dipole (PD) and Pole-Pole to investigate the possibility of the co-operative inversion schemes. The results show that the co-operative inversion of the combined data sets is better than the inversion of the individual ones. The order of inversion for each data set can produce different results. Fuzzy c-means constraint may assist the inversion to produce better results.\",\"PeriodicalId\":8502,\"journal\":{\"name\":\"ASEG Extended Abstracts\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASEG Extended Abstracts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/22020586.2019.12073100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASEG Extended Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/22020586.2019.12073100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

直流电阻率法是目前应用最广泛的物探方法之一。与安装系统所需的时间相比,数据采集技术的发展使采集各种电极阵列的多个数据集具有一点额外的测量时间。因此,数据处理器需要利用尽可能多的有用信息来建立更可靠的地电模型。本研究旨在对不同电极配置的多个数据集进行协同反演过程的测试。我们使用最常见的电极阵列:温纳-斯伦贝谢(WS)、偶极-偶极(DD)、极-偶极(PD)和极-极(Pole-Pole)的合成模型来研究协同反演方案的可能性。结果表明,组合数据集的协同反演效果优于单个数据集的反演效果。每个数据集的反演顺序可以产生不同的结果。模糊c均值约束可以帮助反演得到更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Co-operative inversion of geoelectrical data sets acquired from different electrode arrays
Summary Direct current resistivity (DCR) method is one of the most commonly applied geophysical exploration methods. The development of data acquisition techniques enables the acquisition of multiple data sets of various electrode arrays with a little extra measurement time in comparison with the time that needs to install the system. Accordingly, the data processor is required to utilise as much as possible useful information to build a more reliable geoelectrical model. This study aims to test using the co-operative inversion process to the multiple data sets of various electrode configurations. We use a synthetic model with the most common electrode arrays: Wenner-Schlumberger (WS), Dipole-Dipole (DD), Pole-Dipole (PD) and Pole-Pole to investigate the possibility of the co-operative inversion schemes. The results show that the co-operative inversion of the combined data sets is better than the inversion of the individual ones. The order of inversion for each data set can produce different results. Fuzzy c-means constraint may assist the inversion to produce better results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Forrestania and Nepean electromagnetic test ranges, Western Australia – a comparison of airborne systems Smart stitching: adding lateral priors to ensemble inversions as a post-processing step X-ray computerised tomography for fracture and facies characterisation and slab orientation in cores stored within aluminium tubes Geophysical characterization of the remanent anomaly in the Paleo/Mesoproteozoic Araí Intracontinental Rift, Brazil Viability of long-short term memory neural networks for seismic refraction first break detection – a preliminary study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1