基于信息检索的法律检索系统

Nilotpal Chatterjee, Inshal Khan, Mrigank Pagey, Anant Loiya, A. Agrawal, A. Zadgaonkar
{"title":"基于信息检索的法律检索系统","authors":"Nilotpal Chatterjee, Inshal Khan, Mrigank Pagey, Anant Loiya, A. Agrawal, A. Zadgaonkar","doi":"10.47164/ijngc.v14i1.1004","DOIUrl":null,"url":null,"abstract":"\n\n\nCalculating the similarity between two legal documents to find similar legal judgments is an important challenge in legal information. Efficiently computing this similarity by expanding widely used information retrieval and search engine techniques has practical applications in a number of tasks, like locating pertinent prior cases for a specific case document. Programmed data recovery frameworks or reports are the main parts of today’s selected emotional support networks or web indexes to reduce data overload. Investigating methodologies to work on the presentation of report recovery frameworks and web search tools is a working area of research. Various methods have been pro- posed in this research paper to explore ways to search the common law system for cases with a similar outcome. Building a legal decision support system is intended to increase efficiency by assisting stakeholders—including judges and attorneys—in finding related rulings promptly. In order to prepare arguments, a lawyer typically has to review earlier decisions that are comparable to (or pertinent to) the current case. The attorney examines the judgement database to discover similar judgements. Legal rulings are complex in nature and refer to other judgments. For this, proper techniques are needed for quality analysis of judgments and correct deductions from them. A proper analysis of several types of similarity measures, such as all-term-based similarity methods, legal terms, co-citations, and bibliographic links, performed to look for comparable conclusions. According to experimental findings, the law term similarity approach outperforms all term cosine similarity methods. The out- comes also demonstrate that the co-citation approach performs worse than the bibliographic linkage similarity method and improves performance over the co-citation approach. After proper analysis of various methods in this field, proper comparison can be made between documents and similar legal documents can also be easily searched based on their similarity pattern and can be used to make meaningful deductions.\n\n\n","PeriodicalId":42021,"journal":{"name":"International Journal of Next-Generation Computing","volume":"358 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Information Retrieval Based Legal Search System\",\"authors\":\"Nilotpal Chatterjee, Inshal Khan, Mrigank Pagey, Anant Loiya, A. Agrawal, A. Zadgaonkar\",\"doi\":\"10.47164/ijngc.v14i1.1004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\n\\nCalculating the similarity between two legal documents to find similar legal judgments is an important challenge in legal information. Efficiently computing this similarity by expanding widely used information retrieval and search engine techniques has practical applications in a number of tasks, like locating pertinent prior cases for a specific case document. Programmed data recovery frameworks or reports are the main parts of today’s selected emotional support networks or web indexes to reduce data overload. Investigating methodologies to work on the presentation of report recovery frameworks and web search tools is a working area of research. Various methods have been pro- posed in this research paper to explore ways to search the common law system for cases with a similar outcome. Building a legal decision support system is intended to increase efficiency by assisting stakeholders—including judges and attorneys—in finding related rulings promptly. In order to prepare arguments, a lawyer typically has to review earlier decisions that are comparable to (or pertinent to) the current case. The attorney examines the judgement database to discover similar judgements. Legal rulings are complex in nature and refer to other judgments. For this, proper techniques are needed for quality analysis of judgments and correct deductions from them. A proper analysis of several types of similarity measures, such as all-term-based similarity methods, legal terms, co-citations, and bibliographic links, performed to look for comparable conclusions. According to experimental findings, the law term similarity approach outperforms all term cosine similarity methods. The out- comes also demonstrate that the co-citation approach performs worse than the bibliographic linkage similarity method and improves performance over the co-citation approach. After proper analysis of various methods in this field, proper comparison can be made between documents and similar legal documents can also be easily searched based on their similarity pattern and can be used to make meaningful deductions.\\n\\n\\n\",\"PeriodicalId\":42021,\"journal\":{\"name\":\"International Journal of Next-Generation Computing\",\"volume\":\"358 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Next-Generation Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47164/ijngc.v14i1.1004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Next-Generation Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47164/ijngc.v14i1.1004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计算两份法律文书之间的相似度以寻找相似的法律判决是法律信息领域的一个重要挑战。通过扩展广泛使用的信息检索和搜索引擎技术,有效地计算这种相似性在许多任务中具有实际应用,例如为特定案例文档定位相关的先前案例。程序化数据恢复框架或报告是当今选择的情感支持网络或web索引的主要部分,以减少数据过载。调查报告恢复框架和网络搜索工具的呈现方法是研究的一个工作领域。本研究报告提出了各种方法,以探索如何在普通法体系中寻找具有类似结果的案例。建立法律决策支持系统的目的是通过帮助包括法官和律师在内的利益相关者及时发现相关裁决,从而提高效率。为了准备辩论,律师通常必须审查与当前案件相当(或相关)的早期判决。律师检查判决书数据库以发现相似的判决书。法律裁决本质上是复杂的,并涉及其他判决。为此,需要适当的技术对判断进行高质量的分析和正确的演绎。对几种类型的相似度量进行了适当的分析,例如基于所有术语的相似方法、法律术语、共引和书目链接,以寻找可比较的结论。实验结果表明,规律项相似度方法优于所有项余弦相似度方法。研究结果还表明,共被引方法比书目链接相似度方法性能差,但比共被引方法性能好。在对该领域的各种方法进行适当的分析后,可以对文件进行适当的比较,也可以根据相似模式轻松地搜索到类似的法律文件,并可以使用它们进行有意义的推论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Information Retrieval Based Legal Search System
Calculating the similarity between two legal documents to find similar legal judgments is an important challenge in legal information. Efficiently computing this similarity by expanding widely used information retrieval and search engine techniques has practical applications in a number of tasks, like locating pertinent prior cases for a specific case document. Programmed data recovery frameworks or reports are the main parts of today’s selected emotional support networks or web indexes to reduce data overload. Investigating methodologies to work on the presentation of report recovery frameworks and web search tools is a working area of research. Various methods have been pro- posed in this research paper to explore ways to search the common law system for cases with a similar outcome. Building a legal decision support system is intended to increase efficiency by assisting stakeholders—including judges and attorneys—in finding related rulings promptly. In order to prepare arguments, a lawyer typically has to review earlier decisions that are comparable to (or pertinent to) the current case. The attorney examines the judgement database to discover similar judgements. Legal rulings are complex in nature and refer to other judgments. For this, proper techniques are needed for quality analysis of judgments and correct deductions from them. A proper analysis of several types of similarity measures, such as all-term-based similarity methods, legal terms, co-citations, and bibliographic links, performed to look for comparable conclusions. According to experimental findings, the law term similarity approach outperforms all term cosine similarity methods. The out- comes also demonstrate that the co-citation approach performs worse than the bibliographic linkage similarity method and improves performance over the co-citation approach. After proper analysis of various methods in this field, proper comparison can be made between documents and similar legal documents can also be easily searched based on their similarity pattern and can be used to make meaningful deductions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Next-Generation Computing
International Journal of Next-Generation Computing COMPUTER SCIENCE, THEORY & METHODS-
自引率
66.70%
发文量
60
期刊最新文献
Integrating Smartphone Sensor Technology to Enhance Fine Motor and Working Memory Skills in Pediatric Obesity: A Gamified Approach Deep Learning based Semantic Segmentation for Buildings Detection from Remote Sensing Images Machine Learning-assisted Distance Based Residual Energy Aware Clustering Algorithm for Energy Efficient Information Dissemination in Urban VANETs High Utility Itemset Extraction using PSO with Online Control Parameter Calibration Alzheimer’s Disease Classification using Feature Enhanced Deep Convolutional Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1