Keun-Hwa Jung, K. Chu, Soon-Tae Lee, Y. Shin, Keon-Joo Lee, Dongeon Park, Jung-Suk Yoo, Soyun Kim, Manho Kim, Sang Kun Lee, J. Roh
{"title":"发育性低铜饮食诱导脑动脉瘤的实验研究","authors":"Keun-Hwa Jung, K. Chu, Soon-Tae Lee, Y. Shin, Keon-Joo Lee, Dongeon Park, Jung-Suk Yoo, Soyun Kim, Manho Kim, Sang Kun Lee, J. Roh","doi":"10.1093/jnen/nlw020","DOIUrl":null,"url":null,"abstract":"Optimal models are needed to understand the pathophysiology of human cerebral aneurysms (CA). We investigated the development of experimental CA by decreasing the activity of lysyl oxidases by dietary copper deficiency from the time of gestation and then augmenting vascular stress by angiotensin II infusion in adulthood. Rats were fed copper-free, low-copper, or normal diets at different time periods from gestation to adulthood. The incidences of CAs were evaluated and autopsies performed to determine the coexistence of cardiovascular diseases. A copper-free diet from gestation was associated with high mortality rates (79.1%) resulting from rupture of ascending aorta aneurysms; a low-copper diet led to acceptable mortality rates (13.6%) and produced CAs and subarachnoid hemorrhage in 46.4% and 3.6% of animals, respectively. Higher proportions of CAs (up to 33.3%) in the rats primed for copper deficiency from gestation ruptured following angiotensin II infusion from adulthood. Gene expression array analyses of the CAs indicated that genes involving extracellular matrix and vascular remodeling were altered in this model. This model enables future research to understand the entire pathogenetic basis of CA development and rupture in association with systemic vasculopathies.","PeriodicalId":16434,"journal":{"name":"Journal of Neuropathology & Experimental Neurology","volume":"42 1","pages":"455–463"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Experimental Induction of Cerebral Aneurysms by Developmental Low Copper Diet\",\"authors\":\"Keun-Hwa Jung, K. Chu, Soon-Tae Lee, Y. Shin, Keon-Joo Lee, Dongeon Park, Jung-Suk Yoo, Soyun Kim, Manho Kim, Sang Kun Lee, J. Roh\",\"doi\":\"10.1093/jnen/nlw020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimal models are needed to understand the pathophysiology of human cerebral aneurysms (CA). We investigated the development of experimental CA by decreasing the activity of lysyl oxidases by dietary copper deficiency from the time of gestation and then augmenting vascular stress by angiotensin II infusion in adulthood. Rats were fed copper-free, low-copper, or normal diets at different time periods from gestation to adulthood. The incidences of CAs were evaluated and autopsies performed to determine the coexistence of cardiovascular diseases. A copper-free diet from gestation was associated with high mortality rates (79.1%) resulting from rupture of ascending aorta aneurysms; a low-copper diet led to acceptable mortality rates (13.6%) and produced CAs and subarachnoid hemorrhage in 46.4% and 3.6% of animals, respectively. Higher proportions of CAs (up to 33.3%) in the rats primed for copper deficiency from gestation ruptured following angiotensin II infusion from adulthood. Gene expression array analyses of the CAs indicated that genes involving extracellular matrix and vascular remodeling were altered in this model. This model enables future research to understand the entire pathogenetic basis of CA development and rupture in association with systemic vasculopathies.\",\"PeriodicalId\":16434,\"journal\":{\"name\":\"Journal of Neuropathology & Experimental Neurology\",\"volume\":\"42 1\",\"pages\":\"455–463\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuropathology & Experimental Neurology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jnen/nlw020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuropathology & Experimental Neurology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jnen/nlw020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental Induction of Cerebral Aneurysms by Developmental Low Copper Diet
Optimal models are needed to understand the pathophysiology of human cerebral aneurysms (CA). We investigated the development of experimental CA by decreasing the activity of lysyl oxidases by dietary copper deficiency from the time of gestation and then augmenting vascular stress by angiotensin II infusion in adulthood. Rats were fed copper-free, low-copper, or normal diets at different time periods from gestation to adulthood. The incidences of CAs were evaluated and autopsies performed to determine the coexistence of cardiovascular diseases. A copper-free diet from gestation was associated with high mortality rates (79.1%) resulting from rupture of ascending aorta aneurysms; a low-copper diet led to acceptable mortality rates (13.6%) and produced CAs and subarachnoid hemorrhage in 46.4% and 3.6% of animals, respectively. Higher proportions of CAs (up to 33.3%) in the rats primed for copper deficiency from gestation ruptured following angiotensin II infusion from adulthood. Gene expression array analyses of the CAs indicated that genes involving extracellular matrix and vascular remodeling were altered in this model. This model enables future research to understand the entire pathogenetic basis of CA development and rupture in association with systemic vasculopathies.