DockerizeMe:自动推断Python代码片段的环境依赖关系

Eric Horton, Chris Parnin
{"title":"DockerizeMe:自动推断Python代码片段的环境依赖关系","authors":"Eric Horton, Chris Parnin","doi":"10.1109/ICSE.2019.00047","DOIUrl":null,"url":null,"abstract":"Platforms like Stack Overflow and GitHub's gist system promote the sharing of ideas and programming techniques via the distribution of code snippets designed to illustrate particular tasks. Python, a popular and fast-growing programming language, sees heavy use on both sites, with nearly one million questions asked on Stack Overflow and 400 thousand public gists on GitHub. Unfortunately, around 75% of the Python example code shared through these sites cannot be directly executed. When run in a clean environment, over 50% of public Python gists fail due to an import error for a missing library. We present DockerizeMe, a technique for inferring the dependencies needed to execute a Python code snippet without import error. DockerizeMe starts with offline knowledge acquisition of the resources and dependencies for popular Python packages from the Python Package Index (PyPI). It then builds Docker specifications using a graph-based inference procedure. Our inference procedure resolves import errors in 892 out of nearly 3,000 gists from the Gistable dataset for which Gistable's baseline approach could not find and install all dependencies.","PeriodicalId":6736,"journal":{"name":"2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)","volume":"38 1","pages":"328-338"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"DockerizeMe: Automatic Inference of Environment Dependencies for Python Code Snippets\",\"authors\":\"Eric Horton, Chris Parnin\",\"doi\":\"10.1109/ICSE.2019.00047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Platforms like Stack Overflow and GitHub's gist system promote the sharing of ideas and programming techniques via the distribution of code snippets designed to illustrate particular tasks. Python, a popular and fast-growing programming language, sees heavy use on both sites, with nearly one million questions asked on Stack Overflow and 400 thousand public gists on GitHub. Unfortunately, around 75% of the Python example code shared through these sites cannot be directly executed. When run in a clean environment, over 50% of public Python gists fail due to an import error for a missing library. We present DockerizeMe, a technique for inferring the dependencies needed to execute a Python code snippet without import error. DockerizeMe starts with offline knowledge acquisition of the resources and dependencies for popular Python packages from the Python Package Index (PyPI). It then builds Docker specifications using a graph-based inference procedure. Our inference procedure resolves import errors in 892 out of nearly 3,000 gists from the Gistable dataset for which Gistable's baseline approach could not find and install all dependencies.\",\"PeriodicalId\":6736,\"journal\":{\"name\":\"2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)\",\"volume\":\"38 1\",\"pages\":\"328-338\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSE.2019.00047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE.2019.00047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

Stack Overflow和GitHub的gist系统等平台通过分发旨在说明特定任务的代码片段来促进思想和编程技术的共享。Python是一种流行且快速发展的编程语言,在这两个网站上都有大量使用,Stack Overflow上有近100万个问题,GitHub上有40万名公众。不幸的是,通过这些站点共享的大约75%的Python示例代码不能直接执行。当在干净的环境中运行时,由于缺少库的导入错误,超过50%的公共Python列表会失败。我们介绍DockerizeMe,这是一种推断执行Python代码段所需的依赖项而不出现导入错误的技术。DockerizeMe首先从Python包索引(PyPI)中获取流行Python包的资源和依赖项的离线知识。然后,它使用基于图的推理过程构建Docker规范。我们的推理过程解决了来自Gistable数据集的近3000个gist中的892个的导入错误,其中Gistable的基线方法无法找到并安装所有依赖项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DockerizeMe: Automatic Inference of Environment Dependencies for Python Code Snippets
Platforms like Stack Overflow and GitHub's gist system promote the sharing of ideas and programming techniques via the distribution of code snippets designed to illustrate particular tasks. Python, a popular and fast-growing programming language, sees heavy use on both sites, with nearly one million questions asked on Stack Overflow and 400 thousand public gists on GitHub. Unfortunately, around 75% of the Python example code shared through these sites cannot be directly executed. When run in a clean environment, over 50% of public Python gists fail due to an import error for a missing library. We present DockerizeMe, a technique for inferring the dependencies needed to execute a Python code snippet without import error. DockerizeMe starts with offline knowledge acquisition of the resources and dependencies for popular Python packages from the Python Package Index (PyPI). It then builds Docker specifications using a graph-based inference procedure. Our inference procedure resolves import errors in 892 out of nearly 3,000 gists from the Gistable dataset for which Gistable's baseline approach could not find and install all dependencies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
VFix: Value-Flow-Guided Precise Program Repair for Null Pointer Dereferences Search-Based Energy Testing of Android Scalable Approaches for Test Suite Reduction A System Identification Based Oracle for Control-CPS Software Fault Localization Training Binary Classifiers as Data Structure Invariants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1