豆科植物Copaifera sp.高度水平的人工神经网络估计

IF 0.5 Q4 FORESTRY Floresta e Ambiente Pub Date : 2022-01-01 DOI:10.1590/2179-8087-floram-2021-00049
Bianca Cerqueira Martins, G. D. S. A. Leal, D. H. B. Binoti, G. C. Santos, Carlos Eduardo Silveira da Silva, J. V. Latorraca
{"title":"豆科植物Copaifera sp.高度水平的人工神经网络估计","authors":"Bianca Cerqueira Martins, G. D. S. A. Leal, D. H. B. Binoti, G. C. Santos, Carlos Eduardo Silveira da Silva, J. V. Latorraca","doi":"10.1590/2179-8087-floram-2021-00049","DOIUrl":null,"url":null,"abstract":"The knowledge of tree attributes of the genus Copaifera sp. (copaiba), such as the height of the trunks, helps to estimate the productive potential of oleoresin and to propose more suitable ways of handling, aiming at optimizing production. This research aimed to test hypsometric equations and deterministic methods of Artificial Neural Networks (ANN) to estimate the total heights levels of the trunks of 31 copaiba trees of the Western Brazilian Amazon, at unknown ages. However, the ANN correlation coefficients obtained were greater than 0,99, demonstrating that they are appropriate for the estimation of height level ( h100% ). Among the ANN architectures, ANN 3 with 2 neurons in the hidden layer stood out. The application of ANN to estimate the total height of the trunk of Copaifera sp. native trees is a viable tool that can contribute to optimize modeling of the different important aspects to determine the productive potential of oleoresin.","PeriodicalId":46895,"journal":{"name":"Floresta e Ambiente","volume":"27 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation height level of Copaifera sp. (Leguminosae) by Artificial Neural Networks\",\"authors\":\"Bianca Cerqueira Martins, G. D. S. A. Leal, D. H. B. Binoti, G. C. Santos, Carlos Eduardo Silveira da Silva, J. V. Latorraca\",\"doi\":\"10.1590/2179-8087-floram-2021-00049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The knowledge of tree attributes of the genus Copaifera sp. (copaiba), such as the height of the trunks, helps to estimate the productive potential of oleoresin and to propose more suitable ways of handling, aiming at optimizing production. This research aimed to test hypsometric equations and deterministic methods of Artificial Neural Networks (ANN) to estimate the total heights levels of the trunks of 31 copaiba trees of the Western Brazilian Amazon, at unknown ages. However, the ANN correlation coefficients obtained were greater than 0,99, demonstrating that they are appropriate for the estimation of height level ( h100% ). Among the ANN architectures, ANN 3 with 2 neurons in the hidden layer stood out. The application of ANN to estimate the total height of the trunk of Copaifera sp. native trees is a viable tool that can contribute to optimize modeling of the different important aspects to determine the productive potential of oleoresin.\",\"PeriodicalId\":46895,\"journal\":{\"name\":\"Floresta e Ambiente\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Floresta e Ambiente\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/2179-8087-floram-2021-00049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Floresta e Ambiente","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/2179-8087-floram-2021-00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

摘要

对Copaifera sp. (copaiba)属树木属性的了解,如树干的高度,有助于估计油树脂的生产潜力,并提出更合适的处理方法,旨在优化生产。本研究旨在测试假设方程和人工神经网络(ANN)的确定性方法,以估计巴西西部亚马逊地区31棵未知年龄的copaiba树的树干总高度。然而,得到的人工神经网络相关系数均大于0.99,表明它们适合于高度水平的估计(h100%)。在所有的ANN架构中,隐藏层中包含2个神经元的ANN 3最为突出。应用人工神经网络估算Copaifera sp.原生树的树干总高度是一种可行的工具,可以帮助优化不同重要方面的建模,以确定油树脂的生产潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation height level of Copaifera sp. (Leguminosae) by Artificial Neural Networks
The knowledge of tree attributes of the genus Copaifera sp. (copaiba), such as the height of the trunks, helps to estimate the productive potential of oleoresin and to propose more suitable ways of handling, aiming at optimizing production. This research aimed to test hypsometric equations and deterministic methods of Artificial Neural Networks (ANN) to estimate the total heights levels of the trunks of 31 copaiba trees of the Western Brazilian Amazon, at unknown ages. However, the ANN correlation coefficients obtained were greater than 0,99, demonstrating that they are appropriate for the estimation of height level ( h100% ). Among the ANN architectures, ANN 3 with 2 neurons in the hidden layer stood out. The application of ANN to estimate the total height of the trunk of Copaifera sp. native trees is a viable tool that can contribute to optimize modeling of the different important aspects to determine the productive potential of oleoresin.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
12.50%
发文量
20
审稿时长
31 weeks
期刊最新文献
Quality of Lecythis tuyrana Pittier Seedlings Using Controlled-Release Fertilizer, Volumes of Container and Light Acclimatation Temporal Analysis of Forest Fragmentation in the Amazon Rainforest of Tocantins State, Brazil Selecting Native Species for Soil and Water Bioengineering Techniques: Alternative to Restore Areas in Brumadinho, MG, Brazil Mobilization of Storage Reserves in Dalbergia spruceana Benth. (Fabaceae) Seeds During Germination at Different Temperatures Between Caatinga and Atlantic Forest: Floristic Composition in a Transition Area in Northeast Brazil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1