具有可编程推理的概率规划

Vikash K. Mansinghka, Ulrich Schaechtle, Shivam Handa, Alexey Radul, Yutian Chen, M. Rinard
{"title":"具有可编程推理的概率规划","authors":"Vikash K. Mansinghka, Ulrich Schaechtle, Shivam Handa, Alexey Radul, Yutian Chen, M. Rinard","doi":"10.1145/3192366.3192409","DOIUrl":null,"url":null,"abstract":"We introduce inference metaprogramming for probabilistic programming languages, including new language constructs, a formalism, and the rst demonstration of e ectiveness in practice. Instead of relying on rigid black-box inference algorithms hard-coded into the language implementation as in previous probabilistic programming languages, infer- ence metaprogramming enables developers to 1) dynamically decompose inference problems into subproblems, 2) apply in- ference tactics to subproblems, 3) alternate between incorpo- rating new data and performing inference over existing data, and 4) explore multiple execution traces of the probabilis- tic program at once. Implemented tactics include gradient- based optimization, Markov chain Monte Carlo, variational inference, and sequental Monte Carlo techniques. Inference metaprogramming enables the concise expression of proba- bilistic models and inference algorithms across diverse elds, such as computer vision, data science, and robotics, within a single probabilistic programming language.","PeriodicalId":20583,"journal":{"name":"Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Probabilistic programming with programmable inference\",\"authors\":\"Vikash K. Mansinghka, Ulrich Schaechtle, Shivam Handa, Alexey Radul, Yutian Chen, M. Rinard\",\"doi\":\"10.1145/3192366.3192409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce inference metaprogramming for probabilistic programming languages, including new language constructs, a formalism, and the rst demonstration of e ectiveness in practice. Instead of relying on rigid black-box inference algorithms hard-coded into the language implementation as in previous probabilistic programming languages, infer- ence metaprogramming enables developers to 1) dynamically decompose inference problems into subproblems, 2) apply in- ference tactics to subproblems, 3) alternate between incorpo- rating new data and performing inference over existing data, and 4) explore multiple execution traces of the probabilis- tic program at once. Implemented tactics include gradient- based optimization, Markov chain Monte Carlo, variational inference, and sequental Monte Carlo techniques. Inference metaprogramming enables the concise expression of proba- bilistic models and inference algorithms across diverse elds, such as computer vision, data science, and robotics, within a single probabilistic programming language.\",\"PeriodicalId\":20583,\"journal\":{\"name\":\"Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3192366.3192409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3192366.3192409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

我们介绍了概率编程语言的推理元编程,包括新的语言结构,一种形式,以及在实践中有效性的其他演示。不像以前的概率编程语言那样依赖于硬编码到语言实现中的严格的黑盒推理算法,推理元编程使开发人员能够1)动态地将推理问题分解为子问题,2)对子问题应用推理策略,3)在合并新数据和对现有数据进行推理之间交替,以及4)一次探索概率程序的多个执行轨迹。实现的策略包括基于梯度的优化、马尔可夫链蒙特卡罗、变分推理和顺序蒙特卡罗技术。推理元编程能够在单一的概率编程语言中对不同领域(如计算机视觉、数据科学和机器人)的概率模型和推理算法进行简洁的表达。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Probabilistic programming with programmable inference
We introduce inference metaprogramming for probabilistic programming languages, including new language constructs, a formalism, and the rst demonstration of e ectiveness in practice. Instead of relying on rigid black-box inference algorithms hard-coded into the language implementation as in previous probabilistic programming languages, infer- ence metaprogramming enables developers to 1) dynamically decompose inference problems into subproblems, 2) apply in- ference tactics to subproblems, 3) alternate between incorpo- rating new data and performing inference over existing data, and 4) explore multiple execution traces of the probabilis- tic program at once. Implemented tactics include gradient- based optimization, Markov chain Monte Carlo, variational inference, and sequental Monte Carlo techniques. Inference metaprogramming enables the concise expression of proba- bilistic models and inference algorithms across diverse elds, such as computer vision, data science, and robotics, within a single probabilistic programming language.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Partial control-flow linearization Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation Bayonet: probabilistic inference for networks Advanced automata-based algorithms for program termination checking Guarded impredicative polymorphism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1