{"title":"基于多项式分类的颜色分割","authors":"N. Bartneck, W. Ritter","doi":"10.1109/ICPR.1992.201857","DOIUrl":null,"url":null,"abstract":"An important step for image analysis is the reduction of colour levels to a small number of significant levels. This can be considered as a classification task. In this paper questions of suitable colour spaces are discussed, which have a strong correlation to the feature space used for classification. Furthermore polynomial classification as a method for colour segmentation with supervised learning is introduced. Finally results are shown coming from the application fields of traffic sign recognition and postal automation.<<ETX>>","PeriodicalId":34917,"journal":{"name":"模式识别与人工智能","volume":"4 1","pages":"635-638"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Colour segmentation with polynomial classification\",\"authors\":\"N. Bartneck, W. Ritter\",\"doi\":\"10.1109/ICPR.1992.201857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important step for image analysis is the reduction of colour levels to a small number of significant levels. This can be considered as a classification task. In this paper questions of suitable colour spaces are discussed, which have a strong correlation to the feature space used for classification. Furthermore polynomial classification as a method for colour segmentation with supervised learning is introduced. Finally results are shown coming from the application fields of traffic sign recognition and postal automation.<<ETX>>\",\"PeriodicalId\":34917,\"journal\":{\"name\":\"模式识别与人工智能\",\"volume\":\"4 1\",\"pages\":\"635-638\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"模式识别与人工智能\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.1992.201857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"模式识别与人工智能","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/ICPR.1992.201857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
Colour segmentation with polynomial classification
An important step for image analysis is the reduction of colour levels to a small number of significant levels. This can be considered as a classification task. In this paper questions of suitable colour spaces are discussed, which have a strong correlation to the feature space used for classification. Furthermore polynomial classification as a method for colour segmentation with supervised learning is introduced. Finally results are shown coming from the application fields of traffic sign recognition and postal automation.<>