LPG脱硫装置弯头腐蚀失效分析

Jianwen Z, Guoqing S, Chuansheng W
{"title":"LPG脱硫装置弯头腐蚀失效分析","authors":"Jianwen Z, Guoqing S, Chuansheng W","doi":"10.35248/2157-7048.19.10.395","DOIUrl":null,"url":null,"abstract":"The elbow plays a crucial role in changing the flow direction of the medium in pipeline system and is one of the most commonly used pipeline components in the oil and gas transportation. This paper focuses on the corrosive failure mechanism of the elbow of regeneration tower of LPG desulfurization unit in a refinery. Aiming at the failure elbow, based on the macro and micro perspectives, the physical laws of the inner layer of the elbow, including the distribution of corrosion holes and wall thickness, are summarized and analyzed. The further characterization methods were used to study the corrosion mechanism, including mechanical properties, metallographic examination, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy spectrum analysis (EDS). Taking the thief hole as center, the elbow was divided into 4 rows. It is found that the maximum diameter was 21.1 mm while the minimum was 7.76 mm, and the vast majority of holes were 16 ~ 19 mm. The average size of the middle section was larger, meanwhile, possessed most holes over 19 mm. The corrosion thickness first increased then decreased along the flow direction and reached the maximum in completely destroyed area of the 1st and 2nd row. The corrosion thickness increased gradually along the flow direction of the 3rd and 4th row. Erosion corrosion is the main cause of elbow failure. Fluid erosion plays a dominant role in the failure process while electrochemical corrosion plays a dominant role in the formation of corrosion holes. Besides, the presence of heat-stable salts (HSS) also aggravates the corrosion of elbow.","PeriodicalId":15308,"journal":{"name":"Journal of Chemical Engineering & Process Technology","volume":"22 6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corrosion Failure Analysis of Elbow in LPG Desulfurization Unit\",\"authors\":\"Jianwen Z, Guoqing S, Chuansheng W\",\"doi\":\"10.35248/2157-7048.19.10.395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The elbow plays a crucial role in changing the flow direction of the medium in pipeline system and is one of the most commonly used pipeline components in the oil and gas transportation. This paper focuses on the corrosive failure mechanism of the elbow of regeneration tower of LPG desulfurization unit in a refinery. Aiming at the failure elbow, based on the macro and micro perspectives, the physical laws of the inner layer of the elbow, including the distribution of corrosion holes and wall thickness, are summarized and analyzed. The further characterization methods were used to study the corrosion mechanism, including mechanical properties, metallographic examination, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy spectrum analysis (EDS). Taking the thief hole as center, the elbow was divided into 4 rows. It is found that the maximum diameter was 21.1 mm while the minimum was 7.76 mm, and the vast majority of holes were 16 ~ 19 mm. The average size of the middle section was larger, meanwhile, possessed most holes over 19 mm. The corrosion thickness first increased then decreased along the flow direction and reached the maximum in completely destroyed area of the 1st and 2nd row. The corrosion thickness increased gradually along the flow direction of the 3rd and 4th row. Erosion corrosion is the main cause of elbow failure. Fluid erosion plays a dominant role in the failure process while electrochemical corrosion plays a dominant role in the formation of corrosion holes. Besides, the presence of heat-stable salts (HSS) also aggravates the corrosion of elbow.\",\"PeriodicalId\":15308,\"journal\":{\"name\":\"Journal of Chemical Engineering & Process Technology\",\"volume\":\"22 6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Engineering & Process Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35248/2157-7048.19.10.395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Engineering & Process Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35248/2157-7048.19.10.395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

弯头在管道系统中起着改变介质流动方向的关键作用,是油气输送中最常用的管道部件之一。对某炼油厂LPG脱硫装置再生塔弯管腐蚀失效机理进行了研究。针对失效弯头,从宏观和微观两个角度,总结和分析了弯头内层的物理规律,包括腐蚀孔分布和壁厚。采用力学性能、金相检验、x射线衍射分析(XRD)、扫描电镜(SEM)和能谱分析(EDS)等进一步表征方法研究了腐蚀机理。以贼洞为中心,将肘部分成4排。结果表明,孔的最大直径为21.1 mm,最小直径为7.76 mm,绝大多数孔的直径为16 ~ 19 mm。中间截面的平均尺寸较大,孔洞大于19 mm的居多。腐蚀厚度沿流动方向先增大后减小,在第1排和第2排完全破坏区达到最大值。腐蚀厚度沿第3排和第4排流动方向逐渐增大。冲蚀腐蚀是弯管失效的主要原因。流体侵蚀在破坏过程中起主导作用,电化学腐蚀在腐蚀孔的形成中起主导作用。此外,热稳定盐(HSS)的存在也加剧了弯头的腐蚀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Corrosion Failure Analysis of Elbow in LPG Desulfurization Unit
The elbow plays a crucial role in changing the flow direction of the medium in pipeline system and is one of the most commonly used pipeline components in the oil and gas transportation. This paper focuses on the corrosive failure mechanism of the elbow of regeneration tower of LPG desulfurization unit in a refinery. Aiming at the failure elbow, based on the macro and micro perspectives, the physical laws of the inner layer of the elbow, including the distribution of corrosion holes and wall thickness, are summarized and analyzed. The further characterization methods were used to study the corrosion mechanism, including mechanical properties, metallographic examination, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy spectrum analysis (EDS). Taking the thief hole as center, the elbow was divided into 4 rows. It is found that the maximum diameter was 21.1 mm while the minimum was 7.76 mm, and the vast majority of holes were 16 ~ 19 mm. The average size of the middle section was larger, meanwhile, possessed most holes over 19 mm. The corrosion thickness first increased then decreased along the flow direction and reached the maximum in completely destroyed area of the 1st and 2nd row. The corrosion thickness increased gradually along the flow direction of the 3rd and 4th row. Erosion corrosion is the main cause of elbow failure. Fluid erosion plays a dominant role in the failure process while electrochemical corrosion plays a dominant role in the formation of corrosion holes. Besides, the presence of heat-stable salts (HSS) also aggravates the corrosion of elbow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pengaruh Konsentrasi H2SO4 Dan Hcl Dalam Pembuatan Silika Gel Dari Daun Bambu Untuk Adsorpsi Logam Besi (Fe) Extraction of Vegetable Oil from Candlenut Seeds (Aleurites Moluccana L. Willd.) Using the Microwave Hydrodiffusion and Gravity (MHG) Method Studi Pengaruh Konsentrasi Solvent Dan Kondisi Operasi Terhadap Persen (%) Recovery Nikel Pada Proses Atmospheric Leaching Ore Laterite Asal Morowali Dengan Asam Sulfat Efek Rasio Umpan Co-Gasifikasi Batu Bara dan Tandan Kosong Kelapa Sawit terhadap Produksi Metanol: Studi Simulasi PEMBUATAN BIOETANOL BERBAHAN BAKU Chlorella pyrenoidosa DENGAN METODE HIDROLISIS ASAM DAN FERMENTASI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1