使用复杂事件处理执行多角度声明性过程模型

IF 7.4 3区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Business & Information Systems Engineering Pub Date : 2021-01-01 DOI:10.52825/bis.v1i.51
Niklas Ruhkamp, Stefan Schönig
{"title":"使用复杂事件处理执行多角度声明性过程模型","authors":"Niklas Ruhkamp, Stefan Schönig","doi":"10.52825/bis.v1i.51","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT) enables continuous monitoring of phenomena based on sensing devices as well as analytics opportunities in smart environments. Complex Event Processing (CEP) comprises a set of techniques for making sense of the behavior of a monitored system by deriving higher level knowledge from lower level system events. Business Process Management (BPM) attempts to model processes and ensures that executed processes con-form with a predefined sequence. In IoT scenarios frequently a large number of events has to be analyzed in real-time to allow an instant response. While BPM reaches its limits in such situ-ations, CEP is able to analyze and process high volume streams of data in real-time. The evaluation and execution of rules and models of both paradigms are currently based on separate formalisms and are frequently implemented in heterogeneous systems. The presented paper integrates both domains by proposing an execution approach for multi-perspective declarative process process models completely based on CEP. The efficiency of the combined paradigms is validated in an implemented demonstration with simulated and real-life sensor data.","PeriodicalId":56020,"journal":{"name":"Business & Information Systems Engineering","volume":"1 1","pages":"95-104"},"PeriodicalIF":7.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Execution of Multi-Perspective Declarative Process Models Using Complex Event Processing\",\"authors\":\"Niklas Ruhkamp, Stefan Schönig\",\"doi\":\"10.52825/bis.v1i.51\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Internet of Things (IoT) enables continuous monitoring of phenomena based on sensing devices as well as analytics opportunities in smart environments. Complex Event Processing (CEP) comprises a set of techniques for making sense of the behavior of a monitored system by deriving higher level knowledge from lower level system events. Business Process Management (BPM) attempts to model processes and ensures that executed processes con-form with a predefined sequence. In IoT scenarios frequently a large number of events has to be analyzed in real-time to allow an instant response. While BPM reaches its limits in such situ-ations, CEP is able to analyze and process high volume streams of data in real-time. The evaluation and execution of rules and models of both paradigms are currently based on separate formalisms and are frequently implemented in heterogeneous systems. The presented paper integrates both domains by proposing an execution approach for multi-perspective declarative process process models completely based on CEP. The efficiency of the combined paradigms is validated in an implemented demonstration with simulated and real-life sensor data.\",\"PeriodicalId\":56020,\"journal\":{\"name\":\"Business & Information Systems Engineering\",\"volume\":\"1 1\",\"pages\":\"95-104\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Business & Information Systems Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.52825/bis.v1i.51\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Business & Information Systems Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.52825/bis.v1i.51","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

物联网(IoT)使基于传感设备的现象持续监测以及智能环境中的分析机会成为可能。复杂事件处理(CEP)包括一组技术,通过从低级系统事件派生高级知识来理解被监视系统的行为。业务流程管理(BPM)尝试对流程进行建模,并确保执行的流程符合预定义的顺序。在物联网场景中,经常需要实时分析大量事件以实现即时响应。虽然BPM在这种情况下达到了极限,但CEP能够实时分析和处理大量数据流。两种范式的规则和模型的评估和执行目前基于不同的形式化,并且经常在异构系统中实现。本文提出了一种完全基于CEP的多角度声明性过程模型的执行方法,从而集成了这两个领域。通过仿真和实际传感器数据验证了组合范式的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Execution of Multi-Perspective Declarative Process Models Using Complex Event Processing
The Internet of Things (IoT) enables continuous monitoring of phenomena based on sensing devices as well as analytics opportunities in smart environments. Complex Event Processing (CEP) comprises a set of techniques for making sense of the behavior of a monitored system by deriving higher level knowledge from lower level system events. Business Process Management (BPM) attempts to model processes and ensures that executed processes con-form with a predefined sequence. In IoT scenarios frequently a large number of events has to be analyzed in real-time to allow an instant response. While BPM reaches its limits in such situ-ations, CEP is able to analyze and process high volume streams of data in real-time. The evaluation and execution of rules and models of both paradigms are currently based on separate formalisms and are frequently implemented in heterogeneous systems. The presented paper integrates both domains by proposing an execution approach for multi-perspective declarative process process models completely based on CEP. The efficiency of the combined paradigms is validated in an implemented demonstration with simulated and real-life sensor data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Business & Information Systems Engineering
Business & Information Systems Engineering Computer Science-Information Systems
CiteScore
13.60
自引率
7.60%
发文量
44
审稿时长
3 months
期刊介绍: Business & Information Systems Engineering (BISE) is a double-blind peer-reviewed journal with a primary focus on the design and utilization of information systems for social welfare. The journal aims to contribute to the understanding and advancement of information systems in ways that benefit societal well-being.
期刊最新文献
The Design of Citizen-Centric Green IS in Sustainable Smart Districts A Maturity Model for Assessing the Digitalization of Public Health Agencies IT Professionals in the Gig Economy A Reference System Architecture with Data Sovereignty for Human-Centric Data Ecosystems Analyzing Medical Data with Process Mining: a COVID-19 Case Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1