翻转不变运动表示

Takumi Kobayashi
{"title":"翻转不变运动表示","authors":"Takumi Kobayashi","doi":"10.1109/ICCV.2017.600","DOIUrl":null,"url":null,"abstract":"In action recognition, local motion descriptors contribute to effectively representing video sequences where target actions appear in localized spatio-temporal regions. For robust recognition, those fundamental descriptors are required to be invariant against horizontal (mirror) flipping in video frames which frequently occurs due to changes of camera viewpoints and action directions, deteriorating classification performance. In this paper, we propose methods to render flip invariance to the local motion descriptors by two approaches. One method leverages local motion flows to ensure the invariance on input patches where the descriptors are computed. The other derives a invariant form theoretically from the flipping transformation applied to hand-crafted descriptors. The method is also extended so as to deal with ConvNet descriptors through learning the invariant form based on data. The experimental results on human action classification show that the proposed methods favorably improve performance both of the handcrafted and the ConvNet descriptors.","PeriodicalId":6559,"journal":{"name":"2017 IEEE International Conference on Computer Vision (ICCV)","volume":"17 1","pages":"5629-5638"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Flip-Invariant Motion Representation\",\"authors\":\"Takumi Kobayashi\",\"doi\":\"10.1109/ICCV.2017.600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In action recognition, local motion descriptors contribute to effectively representing video sequences where target actions appear in localized spatio-temporal regions. For robust recognition, those fundamental descriptors are required to be invariant against horizontal (mirror) flipping in video frames which frequently occurs due to changes of camera viewpoints and action directions, deteriorating classification performance. In this paper, we propose methods to render flip invariance to the local motion descriptors by two approaches. One method leverages local motion flows to ensure the invariance on input patches where the descriptors are computed. The other derives a invariant form theoretically from the flipping transformation applied to hand-crafted descriptors. The method is also extended so as to deal with ConvNet descriptors through learning the invariant form based on data. The experimental results on human action classification show that the proposed methods favorably improve performance both of the handcrafted and the ConvNet descriptors.\",\"PeriodicalId\":6559,\"journal\":{\"name\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"17 1\",\"pages\":\"5629-5638\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2017.600\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2017.600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在动作识别中,局部运动描述符有助于有效地表示目标动作出现在局部时空区域的视频序列。为了实现鲁棒性识别,这些基本描述符需要对视频帧中由于摄像机视点和动作方向的变化而经常发生的水平(镜像)翻转保持不变性,从而降低分类性能。在本文中,我们提出了两种方法来实现局部运动描述子的翻转不变性。一种方法利用局部运动流来确保计算描述符的输入补丁的不变性。另一种是从应用于手工描述符的翻转变换的理论推导出不变形式。通过学习基于数据的不变形式,将该方法扩展到处理卷积网络描述符。人体动作分类的实验结果表明,所提出的方法能较好地提高手工描述子和卷积神经网络描述子的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flip-Invariant Motion Representation
In action recognition, local motion descriptors contribute to effectively representing video sequences where target actions appear in localized spatio-temporal regions. For robust recognition, those fundamental descriptors are required to be invariant against horizontal (mirror) flipping in video frames which frequently occurs due to changes of camera viewpoints and action directions, deteriorating classification performance. In this paper, we propose methods to render flip invariance to the local motion descriptors by two approaches. One method leverages local motion flows to ensure the invariance on input patches where the descriptors are computed. The other derives a invariant form theoretically from the flipping transformation applied to hand-crafted descriptors. The method is also extended so as to deal with ConvNet descriptors through learning the invariant form based on data. The experimental results on human action classification show that the proposed methods favorably improve performance both of the handcrafted and the ConvNet descriptors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Odometry for Pixel Processor Arrays Rolling Shutter Correction in Manhattan World Sketching with Style: Visual Search with Sketches and Aesthetic Context Active Learning for Human Pose Estimation Attribute-Enhanced Face Recognition with Neural Tensor Fusion Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1