{"title":"数据挖掘和社会网络分析的概念和应用","authors":"Azam Hajiaghajani","doi":"10.59615/jda.2.1.1","DOIUrl":null,"url":null,"abstract":"Social media has become an important reference for information during the last few decades. They have been able to be effective in various fields such as business, entertainment, science, crisis management, politics, etc. For this reason, a social media analysis has become very important for researchers and large companies. The widespread use of social media leads to a complex problem called \"accumulation of data\". Many data science specialists seek to analyze this data in order to identify the behavioral characteristics of users, analyze interests and needs, and improve marketing processes. Different social media platforms have the ability to use all kinds of media, including text data, video, video, audio, and location information, etc. Therefore, data analysis in social networks is very important. In this research, the concepts and applications of data analysis in social networks will be investigated.","PeriodicalId":45667,"journal":{"name":"International Journal of Data Science and Analytics","volume":"20 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Concepts and applications of data mining and analysis of social networks\",\"authors\":\"Azam Hajiaghajani\",\"doi\":\"10.59615/jda.2.1.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social media has become an important reference for information during the last few decades. They have been able to be effective in various fields such as business, entertainment, science, crisis management, politics, etc. For this reason, a social media analysis has become very important for researchers and large companies. The widespread use of social media leads to a complex problem called \\\"accumulation of data\\\". Many data science specialists seek to analyze this data in order to identify the behavioral characteristics of users, analyze interests and needs, and improve marketing processes. Different social media platforms have the ability to use all kinds of media, including text data, video, video, audio, and location information, etc. Therefore, data analysis in social networks is very important. In this research, the concepts and applications of data analysis in social networks will be investigated.\",\"PeriodicalId\":45667,\"journal\":{\"name\":\"International Journal of Data Science and Analytics\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Science and Analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59615/jda.2.1.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Science and Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59615/jda.2.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Concepts and applications of data mining and analysis of social networks
Social media has become an important reference for information during the last few decades. They have been able to be effective in various fields such as business, entertainment, science, crisis management, politics, etc. For this reason, a social media analysis has become very important for researchers and large companies. The widespread use of social media leads to a complex problem called "accumulation of data". Many data science specialists seek to analyze this data in order to identify the behavioral characteristics of users, analyze interests and needs, and improve marketing processes. Different social media platforms have the ability to use all kinds of media, including text data, video, video, audio, and location information, etc. Therefore, data analysis in social networks is very important. In this research, the concepts and applications of data analysis in social networks will be investigated.
期刊介绍:
Data Science has been established as an important emergent scientific field and paradigm driving research evolution in such disciplines as statistics, computing science and intelligence science, and practical transformation in such domains as science, engineering, the public sector, business, social science, and lifestyle. The field encompasses the larger areas of artificial intelligence, data analytics, machine learning, pattern recognition, natural language understanding, and big data manipulation. It also tackles related new scientific challenges, ranging from data capture, creation, storage, retrieval, sharing, analysis, optimization, and visualization, to integrative analysis across heterogeneous and interdependent complex resources for better decision-making, collaboration, and, ultimately, value creation.The International Journal of Data Science and Analytics (JDSA) brings together thought leaders, researchers, industry practitioners, and potential users of data science and analytics, to develop the field, discuss new trends and opportunities, exchange ideas and practices, and promote transdisciplinary and cross-domain collaborations. The journal is composed of three streams: Regular, to communicate original and reproducible theoretical and experimental findings on data science and analytics; Applications, to report the significant data science applications to real-life situations; and Trends, to report expert opinion and comprehensive surveys and reviews of relevant areas and topics in data science and analytics.Topics of relevance include all aspects of the trends, scientific foundations, techniques, and applications of data science and analytics, with a primary focus on:statistical and mathematical foundations for data science and analytics;understanding and analytics of complex data, human, domain, network, organizational, social, behavior, and system characteristics, complexities and intelligences;creation and extraction, processing, representation and modelling, learning and discovery, fusion and integration, presentation and visualization of complex data, behavior, knowledge and intelligence;data analytics, pattern recognition, knowledge discovery, machine learning, deep analytics and deep learning, and intelligent processing of various data (including transaction, text, image, video, graph and network), behaviors and systems;active, real-time, personalized, actionable and automated analytics, learning, computation, optimization, presentation and recommendation; big data architecture, infrastructure, computing, matching, indexing, query processing, mapping, search, retrieval, interoperability, exchange, and recommendation;in-memory, distributed, parallel, scalable and high-performance computing, analytics and optimization for big data;review, surveys, trends, prospects and opportunities of data science research, innovation and applications;data science applications, intelligent devices and services in scientific, business, governmental, cultural, behavioral, social and economic, health and medical, human, natural and artificial (including online/Web, cloud, IoT, mobile and social media) domains; andethics, quality, privacy, safety and security, trust, and risk of data science and analytics