基于光控金属配体配位的可重构材料

Jianxiong Han, Yun-shuai Huang, Ni Yang, Si Wu
{"title":"基于光控金属配体配位的可重构材料","authors":"Jianxiong Han, Yun-shuai Huang, Ni Yang, Si Wu","doi":"10.1002/aisy.202000112","DOIUrl":null,"url":null,"abstract":"Photoresponsive materials have attracted growing interest because of their potential applications in materials science, such as photoswitches, photopatterning, information storage, and so on. However, there are some challenges for photoresponsive materials for certain applications: 1) Only a few photoresponsive surfaces are transformed into multiple states after photoreactions to adapt to changing environmental conditions; 2) Photoresponsive materials may not function properly in cold environments, especially for gels. To address these problems, we have recently developed photoresponsive materials based on ruthenium (Ru) complexes. Such Ru complexes showed a photoinduced ligand substitution under visible light irradiation. Reconfigurable surfaces that can adapt to environmental changes and photoresponsive organohydrogels that function effectively at sub‐zero temperatures have been fabricated using photoresponsive Ru complexes. Herein, it is demonstrated that based on photocontrolled Ru–ligand coordination, reconfigurable surfaces can be modified for user‐defined functions via visible light irradiation and that photoresponsive gels can function even at –20 °C. As a perspective, Ru‐containing photoresponsive complexes could open up pathways for a variety of applications.","PeriodicalId":7187,"journal":{"name":"Advanced Intelligent Systems","volume":"24 11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Reconfigurable Materials Based on Photocontrolled Metal–Ligand Coordination\",\"authors\":\"Jianxiong Han, Yun-shuai Huang, Ni Yang, Si Wu\",\"doi\":\"10.1002/aisy.202000112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photoresponsive materials have attracted growing interest because of their potential applications in materials science, such as photoswitches, photopatterning, information storage, and so on. However, there are some challenges for photoresponsive materials for certain applications: 1) Only a few photoresponsive surfaces are transformed into multiple states after photoreactions to adapt to changing environmental conditions; 2) Photoresponsive materials may not function properly in cold environments, especially for gels. To address these problems, we have recently developed photoresponsive materials based on ruthenium (Ru) complexes. Such Ru complexes showed a photoinduced ligand substitution under visible light irradiation. Reconfigurable surfaces that can adapt to environmental changes and photoresponsive organohydrogels that function effectively at sub‐zero temperatures have been fabricated using photoresponsive Ru complexes. Herein, it is demonstrated that based on photocontrolled Ru–ligand coordination, reconfigurable surfaces can be modified for user‐defined functions via visible light irradiation and that photoresponsive gels can function even at –20 °C. As a perspective, Ru‐containing photoresponsive complexes could open up pathways for a variety of applications.\",\"PeriodicalId\":7187,\"journal\":{\"name\":\"Advanced Intelligent Systems\",\"volume\":\"24 11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/aisy.202000112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/aisy.202000112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

光响应材料因其在光开关、光图像化、信息存储等材料科学领域的潜在应用而受到越来越多的关注。然而,在某些应用中,光响应材料面临着一些挑战:1)只有少数光响应表面在光反应后转变为多种状态以适应不断变化的环境条件;2)光响应材料在寒冷环境下可能无法正常工作,尤其是凝胶。为了解决这些问题,我们最近开发了基于钌(Ru)配合物的光响应材料。这种钌配合物在可见光照射下表现出光诱导的配体取代。利用光响应性钌配合物制备了可适应环境变化的可重构表面和在零下温度下有效工作的光响应性有机水凝胶。本文证明,基于光控ru配体配位,可重构表面可以通过可见光照射修改为用户定义的功能,并且光响应凝胶即使在-20°C下也可以发挥作用。从一个角度来看,含钌的光响应复合物可以为各种应用开辟途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reconfigurable Materials Based on Photocontrolled Metal–Ligand Coordination
Photoresponsive materials have attracted growing interest because of their potential applications in materials science, such as photoswitches, photopatterning, information storage, and so on. However, there are some challenges for photoresponsive materials for certain applications: 1) Only a few photoresponsive surfaces are transformed into multiple states after photoreactions to adapt to changing environmental conditions; 2) Photoresponsive materials may not function properly in cold environments, especially for gels. To address these problems, we have recently developed photoresponsive materials based on ruthenium (Ru) complexes. Such Ru complexes showed a photoinduced ligand substitution under visible light irradiation. Reconfigurable surfaces that can adapt to environmental changes and photoresponsive organohydrogels that function effectively at sub‐zero temperatures have been fabricated using photoresponsive Ru complexes. Herein, it is demonstrated that based on photocontrolled Ru–ligand coordination, reconfigurable surfaces can be modified for user‐defined functions via visible light irradiation and that photoresponsive gels can function even at –20 °C. As a perspective, Ru‐containing photoresponsive complexes could open up pathways for a variety of applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Tactile Synthetic Tissue: from Soft Robotics to Hybrid Surgical Simulators Maximizing the Synaptic Efficiency of Ferroelectric Tunnel Junction Devices Using a Switching Mechanism Hidden in an Identical Pulse Programming Learning Scheme Enhancing Sensitivity across Scales with Highly Sensitive Hall Effect‐Based Auxetic Tactile Sensors 3D Printed Swordfish‐Like Wireless Millirobot Widened Attention‐Enhanced Atrous Convolutional Network for Efficient Embedded Vision Applications under Resource Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1