{"title":"ε-己内酰胺和邻苯三酚的分子模型、反应性参数和光谱化学研究","authors":"F. Lima","doi":"10.48141/sbjchem.21scon.01_lima.pdf","DOIUrl":null,"url":null,"abstract":"In this work, molecular models were obtained, and the reactivity parameters of ε-caprolactam and ophenanthroline were calculated to evaluate the interaction in the formation of complex molecular compounds. It was observed that the main electron donor atoms, in the formation of the metal-ligand bond, are centered mainly on the oxygen and nitrogen atoms, respectively, which are sterically more favorable in these species. Conductance measurements in an aqueous solution were obtained to observe the electrolytic behavior of these compounds. Infrared spectra were also recorded to characterize vibrational transitions in identifying these species when present in complex systems. Molecular spectra of absorption in the UV-visible region were recorded to evaluate the spectrochemical properties of these individual ligands and further verify their influence on the formation of complex molecular systems. The parameters evaluated include the molar absorptivity ε, integrated absorption coefficient, oscillator force, and transition dipole moment. It was observed that the ε parameter indicates molecular transitions in the 190 – 300 nm region and the near-infrared, and the oscillator strength is typical of molecules used as dyes and sensitizers for optical light-emitting systems or light-to-electricity converters.","PeriodicalId":20606,"journal":{"name":"Proceedings of the SOUTHERN BRAZILIAN JOURNAL OF CHEMISTRY 2021 INTERNATIONAL VIRTUAL CONFERENCE","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MOLECULAR MODELING, REACTIVITY PARAMETERS AND SPECTROCHEMIC STUDIES OF ε-CAPROLACTAM AND o-PHENANTROLINE\",\"authors\":\"F. Lima\",\"doi\":\"10.48141/sbjchem.21scon.01_lima.pdf\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, molecular models were obtained, and the reactivity parameters of ε-caprolactam and ophenanthroline were calculated to evaluate the interaction in the formation of complex molecular compounds. It was observed that the main electron donor atoms, in the formation of the metal-ligand bond, are centered mainly on the oxygen and nitrogen atoms, respectively, which are sterically more favorable in these species. Conductance measurements in an aqueous solution were obtained to observe the electrolytic behavior of these compounds. Infrared spectra were also recorded to characterize vibrational transitions in identifying these species when present in complex systems. Molecular spectra of absorption in the UV-visible region were recorded to evaluate the spectrochemical properties of these individual ligands and further verify their influence on the formation of complex molecular systems. The parameters evaluated include the molar absorptivity ε, integrated absorption coefficient, oscillator force, and transition dipole moment. It was observed that the ε parameter indicates molecular transitions in the 190 – 300 nm region and the near-infrared, and the oscillator strength is typical of molecules used as dyes and sensitizers for optical light-emitting systems or light-to-electricity converters.\",\"PeriodicalId\":20606,\"journal\":{\"name\":\"Proceedings of the SOUTHERN BRAZILIAN JOURNAL OF CHEMISTRY 2021 INTERNATIONAL VIRTUAL CONFERENCE\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the SOUTHERN BRAZILIAN JOURNAL OF CHEMISTRY 2021 INTERNATIONAL VIRTUAL CONFERENCE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48141/sbjchem.21scon.01_lima.pdf\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SOUTHERN BRAZILIAN JOURNAL OF CHEMISTRY 2021 INTERNATIONAL VIRTUAL CONFERENCE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48141/sbjchem.21scon.01_lima.pdf","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MOLECULAR MODELING, REACTIVITY PARAMETERS AND SPECTROCHEMIC STUDIES OF ε-CAPROLACTAM AND o-PHENANTROLINE
In this work, molecular models were obtained, and the reactivity parameters of ε-caprolactam and ophenanthroline were calculated to evaluate the interaction in the formation of complex molecular compounds. It was observed that the main electron donor atoms, in the formation of the metal-ligand bond, are centered mainly on the oxygen and nitrogen atoms, respectively, which are sterically more favorable in these species. Conductance measurements in an aqueous solution were obtained to observe the electrolytic behavior of these compounds. Infrared spectra were also recorded to characterize vibrational transitions in identifying these species when present in complex systems. Molecular spectra of absorption in the UV-visible region were recorded to evaluate the spectrochemical properties of these individual ligands and further verify their influence on the formation of complex molecular systems. The parameters evaluated include the molar absorptivity ε, integrated absorption coefficient, oscillator force, and transition dipole moment. It was observed that the ε parameter indicates molecular transitions in the 190 – 300 nm region and the near-infrared, and the oscillator strength is typical of molecules used as dyes and sensitizers for optical light-emitting systems or light-to-electricity converters.