{"title":"有机溶剂对胶束包封催化剂水性涂料固化性能及贮存稳定性的影响","authors":"Shuji Yomo","doi":"10.3390/COATINGS11060722","DOIUrl":null,"url":null,"abstract":"In this study, a 2-pack isocyanate curing waterborne paint (without organic solvents) encapsulating dibutyltin dilaurate (hereinafter, DBTL) in nonionic surfactant micelles with an hydrophilic–lipophilic balance of 13–14 in advance releases DBTL when the micelles are collapsed at 80 °C or higher, whereby the curing progresses rapidly. On the other hand, the viscosity levels of the paint before and after being left at 40 °C for 1 h are almost the same. Organic solvents are mandatory for waterborne paints to provide paint and film properties, but they might collapse the micelles when they are formulated in the paint. In this study, we investigate whether the abovementioned paint containing organic solvents can develop switching functionality in terms of maintaining the storage stability at 40 °C and expressing a catalytic function at 80 °C to progress the curing. As a result, we find that if the solubility of the organic solvent in water at 20 °C is at least 10 g/100 mL and the boiling point is ≤200 °C, both curing and storage stability can be achieved.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Organic Solvent on Curing Behavior and Storage Stability for Waterborne Paint Containing Catalyst Encapsulated in Micelles\",\"authors\":\"Shuji Yomo\",\"doi\":\"10.3390/COATINGS11060722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a 2-pack isocyanate curing waterborne paint (without organic solvents) encapsulating dibutyltin dilaurate (hereinafter, DBTL) in nonionic surfactant micelles with an hydrophilic–lipophilic balance of 13–14 in advance releases DBTL when the micelles are collapsed at 80 °C or higher, whereby the curing progresses rapidly. On the other hand, the viscosity levels of the paint before and after being left at 40 °C for 1 h are almost the same. Organic solvents are mandatory for waterborne paints to provide paint and film properties, but they might collapse the micelles when they are formulated in the paint. In this study, we investigate whether the abovementioned paint containing organic solvents can develop switching functionality in terms of maintaining the storage stability at 40 °C and expressing a catalytic function at 80 °C to progress the curing. As a result, we find that if the solubility of the organic solvent in water at 20 °C is at least 10 g/100 mL and the boiling point is ≤200 °C, both curing and storage stability can be achieved.\",\"PeriodicalId\":22482,\"journal\":{\"name\":\"THE Coatings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"THE Coatings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/COATINGS11060722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE Coatings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/COATINGS11060722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of Organic Solvent on Curing Behavior and Storage Stability for Waterborne Paint Containing Catalyst Encapsulated in Micelles
In this study, a 2-pack isocyanate curing waterborne paint (without organic solvents) encapsulating dibutyltin dilaurate (hereinafter, DBTL) in nonionic surfactant micelles with an hydrophilic–lipophilic balance of 13–14 in advance releases DBTL when the micelles are collapsed at 80 °C or higher, whereby the curing progresses rapidly. On the other hand, the viscosity levels of the paint before and after being left at 40 °C for 1 h are almost the same. Organic solvents are mandatory for waterborne paints to provide paint and film properties, but they might collapse the micelles when they are formulated in the paint. In this study, we investigate whether the abovementioned paint containing organic solvents can develop switching functionality in terms of maintaining the storage stability at 40 °C and expressing a catalytic function at 80 °C to progress the curing. As a result, we find that if the solubility of the organic solvent in water at 20 °C is at least 10 g/100 mL and the boiling point is ≤200 °C, both curing and storage stability can be achieved.