实体匹配的多上下文关注

Dongxiang Zhang, Yuyang Nie, Sai Wu, Yanyan Shen, K. Tan
{"title":"实体匹配的多上下文关注","authors":"Dongxiang Zhang, Yuyang Nie, Sai Wu, Yanyan Shen, K. Tan","doi":"10.1145/3366423.3380017","DOIUrl":null,"url":null,"abstract":"Entity matching (EM) is a classic research problem that identifies data instances referring to the same real-world entity. Recent technical trend in this area is to take advantage of deep learning (DL) to automatically extract discriminative features. DeepER and DeepMatcher have emerged as two pioneering DL models for EM. However, these two state-of-the-art solutions simply incorporate vanilla RNNs and straightforward attention mechanisms. In this paper, we fully exploit the semantic context of embedding vectors for the pair of entity text descriptions. In particular, we propose an integrated multi-context attention framework that takes into account self-attention, pair-attention and global-attention from three types of context. The idea is further extended to incorporate attribute attention in order to support structured datasets. We conduct extensive experiments with 7 benchmark datasets that are publicly accessible. The experimental results clearly establish our superiority over DeepER and DeepMatcher in all the datasets.","PeriodicalId":20754,"journal":{"name":"Proceedings of The Web Conference 2020","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Multi-Context Attention for Entity Matching\",\"authors\":\"Dongxiang Zhang, Yuyang Nie, Sai Wu, Yanyan Shen, K. Tan\",\"doi\":\"10.1145/3366423.3380017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Entity matching (EM) is a classic research problem that identifies data instances referring to the same real-world entity. Recent technical trend in this area is to take advantage of deep learning (DL) to automatically extract discriminative features. DeepER and DeepMatcher have emerged as two pioneering DL models for EM. However, these two state-of-the-art solutions simply incorporate vanilla RNNs and straightforward attention mechanisms. In this paper, we fully exploit the semantic context of embedding vectors for the pair of entity text descriptions. In particular, we propose an integrated multi-context attention framework that takes into account self-attention, pair-attention and global-attention from three types of context. The idea is further extended to incorporate attribute attention in order to support structured datasets. We conduct extensive experiments with 7 benchmark datasets that are publicly accessible. The experimental results clearly establish our superiority over DeepER and DeepMatcher in all the datasets.\",\"PeriodicalId\":20754,\"journal\":{\"name\":\"Proceedings of The Web Conference 2020\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of The Web Conference 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3366423.3380017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The Web Conference 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3366423.3380017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

实体匹配(EM)是识别引用相同现实世界实体的数据实例的经典研究问题。近年来该领域的技术趋势是利用深度学习(DL)来自动提取判别特征。deep和DeepMatcher已经成为EM的两个开创性深度学习模型。然而,这两个最先进的解决方案只是简单地结合了普通的rnn和简单的注意力机制。在本文中,我们充分利用了嵌入向量对实体文本描述的语义上下文。我们特别提出了一个综合的多语境注意框架,该框架考虑了三种类型语境中的自我注意、配对注意和全局注意。为了支持结构化数据集,这个想法被进一步扩展到包含属性关注。我们对7个可公开访问的基准数据集进行了广泛的实验。实验结果清楚地证明了我们在所有数据集上优于deep和DeepMatcher。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-Context Attention for Entity Matching
Entity matching (EM) is a classic research problem that identifies data instances referring to the same real-world entity. Recent technical trend in this area is to take advantage of deep learning (DL) to automatically extract discriminative features. DeepER and DeepMatcher have emerged as two pioneering DL models for EM. However, these two state-of-the-art solutions simply incorporate vanilla RNNs and straightforward attention mechanisms. In this paper, we fully exploit the semantic context of embedding vectors for the pair of entity text descriptions. In particular, we propose an integrated multi-context attention framework that takes into account self-attention, pair-attention and global-attention from three types of context. The idea is further extended to incorporate attribute attention in order to support structured datasets. We conduct extensive experiments with 7 benchmark datasets that are publicly accessible. The experimental results clearly establish our superiority over DeepER and DeepMatcher in all the datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gone, Gone, but Not Really, and Gone, But Not forgotten: A Typology of Website Recoverability Those who are left behind: A chronicle of internet access in Cuba Towards Automated Technologies in the Referencing Quality of Wikidata Companion of The Web Conference 2022, Virtual Event / Lyon, France, April 25 - 29, 2022 WWW '21: The Web Conference 2021, Virtual Event / Ljubljana, Slovenia, April 19-23, 2021
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1