一个解析自引力盘模型:推论和逻辑结构

IF 0.4 4区 物理与天体物理 Q4 ASTRONOMY & ASTROPHYSICS Contributions of the Astronomical Observatory Skalnate Pleso Pub Date : 2020-03-01 DOI:10.31577/caosp.2020.50.2.523
R. E. Wilson
{"title":"一个解析自引力盘模型:推论和逻辑结构","authors":"R. E. Wilson","doi":"10.31577/caosp.2020.50.2.523","DOIUrl":null,"url":null,"abstract":"The foundations of an analytic Accretion-Decretion (A-D) disk model, based on equipotential theory, for mass-transfer binaries are examined. Gravitation of stars 1 and 2 and the disk, as well as disk and star rotation, are included and relevant morphology is explored. Expected applications are to disks with morphologically significant mass and substantial optical thickness. Anticipated targets include classical novae, nova-like variables, and W Serpentis binaries, with the concept invoking knowledge about Be stars and the classically strange binary β Lyrae. The model’s ideas and resulting character differ from those usually applied to optically thick disks – for example there is no need to truncate the model arbitrarily at an outer or inner limit, because it closes naturally at both places. The disk is a volume emitter with attenuation of internally generated light. Computations intrinsically produce phenomena that are characteristic of circumstellar disks in binaries – in particular tidal and rotational gravity brightening and an outer effective gravity null point that do not occur in the common axisymmetric disk model. Impersonal analysis in terms of the model (Least Squares criterion) is applied to light curves of recurrent nova CI Aquilae.","PeriodicalId":50617,"journal":{"name":"Contributions of the Astronomical Observatory Skalnate Pleso","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An analytic self-gravitating disk model: inferences and logical structure\",\"authors\":\"R. E. Wilson\",\"doi\":\"10.31577/caosp.2020.50.2.523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The foundations of an analytic Accretion-Decretion (A-D) disk model, based on equipotential theory, for mass-transfer binaries are examined. Gravitation of stars 1 and 2 and the disk, as well as disk and star rotation, are included and relevant morphology is explored. Expected applications are to disks with morphologically significant mass and substantial optical thickness. Anticipated targets include classical novae, nova-like variables, and W Serpentis binaries, with the concept invoking knowledge about Be stars and the classically strange binary β Lyrae. The model’s ideas and resulting character differ from those usually applied to optically thick disks – for example there is no need to truncate the model arbitrarily at an outer or inner limit, because it closes naturally at both places. The disk is a volume emitter with attenuation of internally generated light. Computations intrinsically produce phenomena that are characteristic of circumstellar disks in binaries – in particular tidal and rotational gravity brightening and an outer effective gravity null point that do not occur in the common axisymmetric disk model. Impersonal analysis in terms of the model (Least Squares criterion) is applied to light curves of recurrent nova CI Aquilae.\",\"PeriodicalId\":50617,\"journal\":{\"name\":\"Contributions of the Astronomical Observatory Skalnate Pleso\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contributions of the Astronomical Observatory Skalnate Pleso\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.31577/caosp.2020.50.2.523\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions of the Astronomical Observatory Skalnate Pleso","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.31577/caosp.2020.50.2.523","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 2

摘要

基于等势理论,研究了传质双星的吸积-减积(A-D)盘解析模型的基础。包括恒星1和2的引力和盘,以及盘和恒星的旋转,并探讨了相关的形态学。预期的应用是具有形态学显著质量和大量光学厚度的磁盘。预期的目标包括经典新星、类新星变量和W蛇双星,这一概念唤起了人们对Be星和经典的奇怪双星β天琴座的认识。该模型的思想和结果特征不同于通常应用于光学厚磁盘的那些—例如,不需要在外部或内部限制处任意截断模型,因为它在两个地方都自然闭合。圆盘是具有内部产生的光衰减的体积发射器。计算本质上产生了双星中星周盘的特征现象-特别是潮汐和旋转重力增亮以及一般轴对称盘模型中不会出现的外部有效重力零点。将非个人化分析模型(最小二乘准则)应用于水仙座CI星的光曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An analytic self-gravitating disk model: inferences and logical structure
The foundations of an analytic Accretion-Decretion (A-D) disk model, based on equipotential theory, for mass-transfer binaries are examined. Gravitation of stars 1 and 2 and the disk, as well as disk and star rotation, are included and relevant morphology is explored. Expected applications are to disks with morphologically significant mass and substantial optical thickness. Anticipated targets include classical novae, nova-like variables, and W Serpentis binaries, with the concept invoking knowledge about Be stars and the classically strange binary β Lyrae. The model’s ideas and resulting character differ from those usually applied to optically thick disks – for example there is no need to truncate the model arbitrarily at an outer or inner limit, because it closes naturally at both places. The disk is a volume emitter with attenuation of internally generated light. Computations intrinsically produce phenomena that are characteristic of circumstellar disks in binaries – in particular tidal and rotational gravity brightening and an outer effective gravity null point that do not occur in the common axisymmetric disk model. Impersonal analysis in terms of the model (Least Squares criterion) is applied to light curves of recurrent nova CI Aquilae.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
20.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: Contributions of the Astronomical Observatory Skalnate Pleso" (CAOSP) is published by the Astronomical Institute of the Slovak Academy of Sciences (SAS). The journal publishes new results of astronomical and astrophysical research, preferentially covering the fields of Interplanetary Matter, Stellar Astrophysics and Solar Physics. We publish regular papers, expert comments and review contributions.
期刊最新文献
Analytical images of Kepler's equation solutions and its analogues Appropriate site selection for the astronomical observatory - Erzincan province sample application Stochastic nonlinear self-oscillatory model of an accretion disk for the X-ray bursting of the microquasar GRS 1915+105 Optimal conditions of the spacecraft acceleration in the gravitational field of planet The low-frequency carbon radio recombination lines in medium toward S140 nebula
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1