不规则间距数据的惩罚小波非参数单变量逻辑回归

IF 1.2 4区 数学 Q2 STATISTICS & PROBABILITY Statistics Pub Date : 2023-08-29 DOI:10.1080/02331888.2023.2248679
U. Amato, A. Antoniadis, I. De Feis, I. Gijbels
{"title":"不规则间距数据的惩罚小波非参数单变量逻辑回归","authors":"U. Amato, A. Antoniadis, I. De Feis, I. Gijbels","doi":"10.1080/02331888.2023.2248679","DOIUrl":null,"url":null,"abstract":"This paper concerns the study of a non-smooth logistic regression function. The focus is on a high-dimensional binary response case by penalizing the decomposition of the unknown logit regression function on a wavelet basis of functions evaluated on the sampling design. Sample sizes are arbitrary (not necessarily dyadic) and we consider general designs. We study separable wavelet estimators, exploiting sparsity of wavelet decompositions for signals belonging to homogeneous Besov spaces, and using efficient iterative proximal gradient descent algorithms. We also discuss a level by level block wavelet penalization technique, leading to a type of regularization in multiple logistic regression with grouped predictors. Theoretical and numerical properties of the proposed estimators are investigated. A simulation study examines the empirical performance of the proposed procedures, and real data applications demonstrate their effectiveness.","PeriodicalId":54358,"journal":{"name":"Statistics","volume":"3 1","pages":"1037 - 1060"},"PeriodicalIF":1.2000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Penalized wavelet nonparametric univariate logistic regression for irregular spaced data\",\"authors\":\"U. Amato, A. Antoniadis, I. De Feis, I. Gijbels\",\"doi\":\"10.1080/02331888.2023.2248679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper concerns the study of a non-smooth logistic regression function. The focus is on a high-dimensional binary response case by penalizing the decomposition of the unknown logit regression function on a wavelet basis of functions evaluated on the sampling design. Sample sizes are arbitrary (not necessarily dyadic) and we consider general designs. We study separable wavelet estimators, exploiting sparsity of wavelet decompositions for signals belonging to homogeneous Besov spaces, and using efficient iterative proximal gradient descent algorithms. We also discuss a level by level block wavelet penalization technique, leading to a type of regularization in multiple logistic regression with grouped predictors. Theoretical and numerical properties of the proposed estimators are investigated. A simulation study examines the empirical performance of the proposed procedures, and real data applications demonstrate their effectiveness.\",\"PeriodicalId\":54358,\"journal\":{\"name\":\"Statistics\",\"volume\":\"3 1\",\"pages\":\"1037 - 1060\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/02331888.2023.2248679\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/02331888.2023.2248679","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类非光滑逻辑回归函数。重点是在一个高维二进制响应的情况下,通过惩罚未知的logit回归函数在小波的基础上对抽样设计的函数进行分解。样本大小是任意的(不一定是二元的),我们考虑一般设计。我们研究了可分离小波估计量,利用属于齐次Besov空间的信号的小波分解的稀疏性,并使用有效的迭代近端梯度下降算法。我们还讨论了一种逐级块小波惩罚技术,在具有分组预测因子的多重逻辑回归中导致一种正则化。研究了所提估计量的理论和数值性质。仿真研究检验了所提出的程序的经验性能,实际数据应用证明了它们的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Penalized wavelet nonparametric univariate logistic regression for irregular spaced data
This paper concerns the study of a non-smooth logistic regression function. The focus is on a high-dimensional binary response case by penalizing the decomposition of the unknown logit regression function on a wavelet basis of functions evaluated on the sampling design. Sample sizes are arbitrary (not necessarily dyadic) and we consider general designs. We study separable wavelet estimators, exploiting sparsity of wavelet decompositions for signals belonging to homogeneous Besov spaces, and using efficient iterative proximal gradient descent algorithms. We also discuss a level by level block wavelet penalization technique, leading to a type of regularization in multiple logistic regression with grouped predictors. Theoretical and numerical properties of the proposed estimators are investigated. A simulation study examines the empirical performance of the proposed procedures, and real data applications demonstrate their effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics
Statistics 数学-统计学与概率论
CiteScore
1.00
自引率
0.00%
发文量
59
审稿时长
12 months
期刊介绍: Statistics publishes papers developing and analysing new methods for any active field of statistics, motivated by real-life problems. Papers submitted for consideration should provide interesting and novel contributions to statistical theory and its applications with rigorous mathematical results and proofs. Moreover, numerical simulations and application to real data sets can improve the quality of papers, and should be included where appropriate. Statistics does not publish papers which represent mere application of existing procedures to case studies, and papers are required to contain methodological or theoretical innovation. Topics of interest include, for example, nonparametric statistics, time series, analysis of topological or functional data. Furthermore the journal also welcomes submissions in the field of theoretical econometrics and its links to mathematical statistics.
期刊最新文献
Robust estimator of the ruin probability in infinite time for heavy-tailed distributions Gaussian modeling with B-splines for spatial functional data on irregular domains A note on the asymptotic behavior of a mildly unstable integer-valued AR(1) model Explainable machine learning for financial risk management: two practical use cases Online updating Huber robust regression for big data streams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1