M. Tabassum, Qasim Zia, Yongfeng Zhou, Yufei Wang, M. Reece, Lei Su
{"title":"基于钙钛矿材料的智能纺织品研究进展","authors":"M. Tabassum, Qasim Zia, Yongfeng Zhou, Yufei Wang, M. Reece, Lei Su","doi":"10.3390/textiles2030025","DOIUrl":null,"url":null,"abstract":"Metal halide perovskites (MHPs) are thought to be among the most promising materials for smart electronic textiles because of their unique optical and electrical characteristics. Recently, wearable perovskite devices have been developed that combine the excellent properties of perovskite with those of textiles, such as flexibility, light weight, and facile processability. In this review, advancements in wearable perovskite devices (e.g., solar cells, photodetectors, and light-emitting diodes) concerning their device architectures, working mechanisms, and fabrication techniques have been discussed. This study also highlights the technical benefits of integrating MHPs into wearable devices. Moreover, the application challenges faced by wearable perovskite optoelectronic devices—from single devices to roll-to-roll manufacturing, stability and storage, and biosafety—are briefly discussed. Finally, future perspectives on using perovskites for other wearable optoelectronic devices are stated.","PeriodicalId":94219,"journal":{"name":"Textiles (Basel, Switzerland)","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Review of Recent Developments in Smart Textiles Based on Perovskite Materials\",\"authors\":\"M. Tabassum, Qasim Zia, Yongfeng Zhou, Yufei Wang, M. Reece, Lei Su\",\"doi\":\"10.3390/textiles2030025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal halide perovskites (MHPs) are thought to be among the most promising materials for smart electronic textiles because of their unique optical and electrical characteristics. Recently, wearable perovskite devices have been developed that combine the excellent properties of perovskite with those of textiles, such as flexibility, light weight, and facile processability. In this review, advancements in wearable perovskite devices (e.g., solar cells, photodetectors, and light-emitting diodes) concerning their device architectures, working mechanisms, and fabrication techniques have been discussed. This study also highlights the technical benefits of integrating MHPs into wearable devices. Moreover, the application challenges faced by wearable perovskite optoelectronic devices—from single devices to roll-to-roll manufacturing, stability and storage, and biosafety—are briefly discussed. Finally, future perspectives on using perovskites for other wearable optoelectronic devices are stated.\",\"PeriodicalId\":94219,\"journal\":{\"name\":\"Textiles (Basel, Switzerland)\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Textiles (Basel, Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/textiles2030025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Textiles (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/textiles2030025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Review of Recent Developments in Smart Textiles Based on Perovskite Materials
Metal halide perovskites (MHPs) are thought to be among the most promising materials for smart electronic textiles because of their unique optical and electrical characteristics. Recently, wearable perovskite devices have been developed that combine the excellent properties of perovskite with those of textiles, such as flexibility, light weight, and facile processability. In this review, advancements in wearable perovskite devices (e.g., solar cells, photodetectors, and light-emitting diodes) concerning their device architectures, working mechanisms, and fabrication techniques have been discussed. This study also highlights the technical benefits of integrating MHPs into wearable devices. Moreover, the application challenges faced by wearable perovskite optoelectronic devices—from single devices to roll-to-roll manufacturing, stability and storage, and biosafety—are briefly discussed. Finally, future perspectives on using perovskites for other wearable optoelectronic devices are stated.