利用贝叶斯概率模型揭示对撞机事件中隐藏的新物理模式

D. Faroughy
{"title":"利用贝叶斯概率模型揭示对撞机事件中隐藏的新物理模式","authors":"D. Faroughy","doi":"10.22323/1.390.0238","DOIUrl":null,"url":null,"abstract":"Individual events at high-energy colliders like the LHC can be represented by a sequence of measurements, or ‘point patterns’. Starting from this generic data representation, we build a simple Bayesian probabilistic model for event measurements useful for unsupervised event classification in beyond the standard model (BSM) studies. In order to arrive to this model we assume that the event measurements are exchangeable (and apply De Finetti’s representation theorem), the data is discrete, and measurements are generated frommultiple ‘latent’ distributions (called themes). The resulting probabilistic model for collider events is a mixed-membership model known as Latent Dirichlet Allocation (LDA), a model extensively used in natural language processing applications. By training on mixed dijet samples of QCD and BSM, we demonstrate that a two-theme LDA model can learn to distinguish in (unlabelled) jet substructure data the hidden new physics patterns produced by a non-trivial BSM signature from a much larger QCD background.","PeriodicalId":20428,"journal":{"name":"Proceedings of 40th International Conference on High Energy physics — PoS(ICHEP2020)","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Uncovering hidden new physics patterns in collider events using Bayesian probabilistic models\",\"authors\":\"D. Faroughy\",\"doi\":\"10.22323/1.390.0238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Individual events at high-energy colliders like the LHC can be represented by a sequence of measurements, or ‘point patterns’. Starting from this generic data representation, we build a simple Bayesian probabilistic model for event measurements useful for unsupervised event classification in beyond the standard model (BSM) studies. In order to arrive to this model we assume that the event measurements are exchangeable (and apply De Finetti’s representation theorem), the data is discrete, and measurements are generated frommultiple ‘latent’ distributions (called themes). The resulting probabilistic model for collider events is a mixed-membership model known as Latent Dirichlet Allocation (LDA), a model extensively used in natural language processing applications. By training on mixed dijet samples of QCD and BSM, we demonstrate that a two-theme LDA model can learn to distinguish in (unlabelled) jet substructure data the hidden new physics patterns produced by a non-trivial BSM signature from a much larger QCD background.\",\"PeriodicalId\":20428,\"journal\":{\"name\":\"Proceedings of 40th International Conference on High Energy physics — PoS(ICHEP2020)\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 40th International Conference on High Energy physics — PoS(ICHEP2020)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.390.0238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 40th International Conference on High Energy physics — PoS(ICHEP2020)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.390.0238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在像大型强子对撞机这样的高能对撞机中,单个事件可以用一系列测量或“点模式”来表示。从这个通用的数据表示开始,我们建立了一个简单的贝叶斯概率模型,用于事件测量,用于非监督事件分类的超越标准模型(BSM)研究。为了达到这个模型,我们假设事件测量是可交换的(并应用De Finetti的表示定理),数据是离散的,并且测量是从多个“潜在”分布(称为主题)生成的。得到的对撞机事件概率模型是一种混合隶属度模型,称为潜狄利克雷分配(LDA),该模型广泛用于自然语言处理应用。通过对QCD和BSM的混合dijet样本进行训练,我们证明了双主题LDA模型可以学习区分(未标记的)射流子结构数据中隐藏的新物理模式,这些物理模式是由更大的QCD背景中的非琐碎BSM签名产生的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Uncovering hidden new physics patterns in collider events using Bayesian probabilistic models
Individual events at high-energy colliders like the LHC can be represented by a sequence of measurements, or ‘point patterns’. Starting from this generic data representation, we build a simple Bayesian probabilistic model for event measurements useful for unsupervised event classification in beyond the standard model (BSM) studies. In order to arrive to this model we assume that the event measurements are exchangeable (and apply De Finetti’s representation theorem), the data is discrete, and measurements are generated frommultiple ‘latent’ distributions (called themes). The resulting probabilistic model for collider events is a mixed-membership model known as Latent Dirichlet Allocation (LDA), a model extensively used in natural language processing applications. By training on mixed dijet samples of QCD and BSM, we demonstrate that a two-theme LDA model can learn to distinguish in (unlabelled) jet substructure data the hidden new physics patterns produced by a non-trivial BSM signature from a much larger QCD background.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Supersymmetric theories and graphene Search for long range flow-like correlation in hadronic $e^{+}e^{-}$ collisions with Belle Status and progress of the JUNO detector The status of the R&D of Ultra Fast 8 times 8 Readout MCP-PMTs in IHEP Characterization of ALPIDE silicon sensors with inclined tracks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1