Sarah Zeiml, Ulrich Seiler, K. Altendorfer, Thomas Felberbauer
{"title":"基于平均百分比误差的自动预报误差校正仿真评价","authors":"Sarah Zeiml, Ulrich Seiler, K. Altendorfer, Thomas Felberbauer","doi":"10.1109/WSC48552.2020.9384055","DOIUrl":null,"url":null,"abstract":"A supplier-customer relationship is studied in this paper, where the customer provides demand forecasts that are updated on a rolling horizon basis. The forecasts show systematic and unsystematic errors related to periods before delivery. The paper presents a decision model to decide whether a recently presented forecast correction model should be applied or not. The introduced dynamic correction model is evaluated for different market scenarios, i.e., seasonal demand with periods with significantly higher or lower demand, and changing planning behaviors, where the systematic bias changes over time. The study shows that the application of the developed dynamic forecast correction model leads to significant forecast quality improvement. However, if no systematic forecast bias occurs, the correction reduces forecast accuracy.","PeriodicalId":6692,"journal":{"name":"2020 Winter Simulation Conference (WSC)","volume":"33 1","pages":"1572-1583"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation Evaluation of Automated Forecast Error Correction Based on Mean Percentage Error\",\"authors\":\"Sarah Zeiml, Ulrich Seiler, K. Altendorfer, Thomas Felberbauer\",\"doi\":\"10.1109/WSC48552.2020.9384055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A supplier-customer relationship is studied in this paper, where the customer provides demand forecasts that are updated on a rolling horizon basis. The forecasts show systematic and unsystematic errors related to periods before delivery. The paper presents a decision model to decide whether a recently presented forecast correction model should be applied or not. The introduced dynamic correction model is evaluated for different market scenarios, i.e., seasonal demand with periods with significantly higher or lower demand, and changing planning behaviors, where the systematic bias changes over time. The study shows that the application of the developed dynamic forecast correction model leads to significant forecast quality improvement. However, if no systematic forecast bias occurs, the correction reduces forecast accuracy.\",\"PeriodicalId\":6692,\"journal\":{\"name\":\"2020 Winter Simulation Conference (WSC)\",\"volume\":\"33 1\",\"pages\":\"1572-1583\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC48552.2020.9384055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC48552.2020.9384055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulation Evaluation of Automated Forecast Error Correction Based on Mean Percentage Error
A supplier-customer relationship is studied in this paper, where the customer provides demand forecasts that are updated on a rolling horizon basis. The forecasts show systematic and unsystematic errors related to periods before delivery. The paper presents a decision model to decide whether a recently presented forecast correction model should be applied or not. The introduced dynamic correction model is evaluated for different market scenarios, i.e., seasonal demand with periods with significantly higher or lower demand, and changing planning behaviors, where the systematic bias changes over time. The study shows that the application of the developed dynamic forecast correction model leads to significant forecast quality improvement. However, if no systematic forecast bias occurs, the correction reduces forecast accuracy.