作为元审稿人的评分者:同时扩展和改进大型在线课堂的专家评估

David A. Joyner, W. Ashby, Liam Irish, Yeeling Lam, Jacob Langson, Isabel Lupiani, Mike Lustig, Paige Pettoruto, Dana Sheahen, Angela Smiley, A. Bruckman, Ashok K. Goel
{"title":"作为元审稿人的评分者:同时扩展和改进大型在线课堂的专家评估","authors":"David A. Joyner, W. Ashby, Liam Irish, Yeeling Lam, Jacob Langson, Isabel Lupiani, Mike Lustig, Paige Pettoruto, Dana Sheahen, Angela Smiley, A. Bruckman, Ashok K. Goel","doi":"10.1145/2876034.2876044","DOIUrl":null,"url":null,"abstract":"Large classes, both online and residential, typically demand many graders for evaluating students' written work. Some classes attempt to use autograding or peer grading, but these both present challenges to assigning grades at for-credit institutions, such as the difficulty of autograding to evaluate free-response answers and the lack of expert oversight in peer grading. In a large, online class at Georgia Tech in Summer 2015, we experimented with a new approach to grading: framing graders as meta-reviewers, charged with evaluating the original work in the context of peer reviews. To evaluate this approach, we conducted a pair of controlled experiments and a handful of qualitative analyses. We found that having access to peer reviews improves the perceived quality of feedback provided by graders without decreasing the graders' efficiency and with only a small influence on the grades assigned.","PeriodicalId":20739,"journal":{"name":"Proceedings of the Third (2016) ACM Conference on Learning @ Scale","volume":"45 2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Graders as Meta-Reviewers: Simultaneously Scaling and Improving Expert Evaluation for Large Online Classrooms\",\"authors\":\"David A. Joyner, W. Ashby, Liam Irish, Yeeling Lam, Jacob Langson, Isabel Lupiani, Mike Lustig, Paige Pettoruto, Dana Sheahen, Angela Smiley, A. Bruckman, Ashok K. Goel\",\"doi\":\"10.1145/2876034.2876044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large classes, both online and residential, typically demand many graders for evaluating students' written work. Some classes attempt to use autograding or peer grading, but these both present challenges to assigning grades at for-credit institutions, such as the difficulty of autograding to evaluate free-response answers and the lack of expert oversight in peer grading. In a large, online class at Georgia Tech in Summer 2015, we experimented with a new approach to grading: framing graders as meta-reviewers, charged with evaluating the original work in the context of peer reviews. To evaluate this approach, we conducted a pair of controlled experiments and a handful of qualitative analyses. We found that having access to peer reviews improves the perceived quality of feedback provided by graders without decreasing the graders' efficiency and with only a small influence on the grades assigned.\",\"PeriodicalId\":20739,\"journal\":{\"name\":\"Proceedings of the Third (2016) ACM Conference on Learning @ Scale\",\"volume\":\"45 2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Third (2016) ACM Conference on Learning @ Scale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2876034.2876044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third (2016) ACM Conference on Learning @ Scale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2876034.2876044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

无论是在线授课还是住校授课,大班授课通常都需要很多评分员来评估学生的书面作业。有些课程尝试使用自动评分或同伴评分,但这两种方法都给信用机构的评分带来了挑战,比如自动评分难以评估自由回答的答案,以及在同伴评分中缺乏专家监督。2015年夏天,在乔治亚理工学院(Georgia Tech)的一个大型在线课堂上,我们尝试了一种新的评分方法:将评分者设定为元审稿人,负责在同行评议的背景下评估原创作品。为了评估这种方法,我们进行了一对对照实验和少量定性分析。我们发现,获得同行评审可以提高评分者提供的反馈的感知质量,而不会降低评分者的效率,而且对分配的分数只有很小的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Graders as Meta-Reviewers: Simultaneously Scaling and Improving Expert Evaluation for Large Online Classrooms
Large classes, both online and residential, typically demand many graders for evaluating students' written work. Some classes attempt to use autograding or peer grading, but these both present challenges to assigning grades at for-credit institutions, such as the difficulty of autograding to evaluate free-response answers and the lack of expert oversight in peer grading. In a large, online class at Georgia Tech in Summer 2015, we experimented with a new approach to grading: framing graders as meta-reviewers, charged with evaluating the original work in the context of peer reviews. To evaluate this approach, we conducted a pair of controlled experiments and a handful of qualitative analyses. We found that having access to peer reviews improves the perceived quality of feedback provided by graders without decreasing the graders' efficiency and with only a small influence on the grades assigned.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online Urbanism: Interest-based Subcultures as Drivers of Informal Learning in an Online Community Course Builder Skill Maps A Preliminary Look at MOOC-associated Facebook Groups: Prevalence, Geographic Representation, and Homophily Profiling MOOC Course Returners: How Does Student Behavior Change Between Two Course Enrollments? AXIS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1