高效的盆地跳跃在蛋白质能量表面

Brian S. Olson, Amarda Shehu
{"title":"高效的盆地跳跃在蛋白质能量表面","authors":"Brian S. Olson, Amarda Shehu","doi":"10.1109/BIBM.2012.6392655","DOIUrl":null,"url":null,"abstract":"The vast and rugged protein energy surface can be effectively represented in terms of local minima. The basin-hopping framework, where a structural perturbation is followed by an energy minimization, is particularly suited to obtaining this coarse-grained representation. Basin hopping is effective for small systems both in locating lower-energy minima and obtaining conformations near the native structure. The efficiency decreases for large systems. Our recent work improves efficiency on large systems through molecular fragment replacement. In this paper, we conduct a detailed investigation of two components in basin hopping, perturbation and minimization, and how they work in concert to affect the sampling of near-native local minima. We show that controlling the magnitude of perturbation jumps is related to the ability to effectively steer the exploration towards conformations near the protein native state. In minimization, we show that a simple greedy search is just as effective as Metropolis Monte Carlo-based minimization. Finally, we show that an evolutionary-inspired approach based on the Pareto front is particularly effective in reducing the ensemble of sampled local minima and obtains a simpler representation of the probed energy surface.","PeriodicalId":6392,"journal":{"name":"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Efficient basin hopping in the protein energy surface\",\"authors\":\"Brian S. Olson, Amarda Shehu\",\"doi\":\"10.1109/BIBM.2012.6392655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The vast and rugged protein energy surface can be effectively represented in terms of local minima. The basin-hopping framework, where a structural perturbation is followed by an energy minimization, is particularly suited to obtaining this coarse-grained representation. Basin hopping is effective for small systems both in locating lower-energy minima and obtaining conformations near the native structure. The efficiency decreases for large systems. Our recent work improves efficiency on large systems through molecular fragment replacement. In this paper, we conduct a detailed investigation of two components in basin hopping, perturbation and minimization, and how they work in concert to affect the sampling of near-native local minima. We show that controlling the magnitude of perturbation jumps is related to the ability to effectively steer the exploration towards conformations near the protein native state. In minimization, we show that a simple greedy search is just as effective as Metropolis Monte Carlo-based minimization. Finally, we show that an evolutionary-inspired approach based on the Pareto front is particularly effective in reducing the ensemble of sampled local minima and obtains a simpler representation of the probed energy surface.\",\"PeriodicalId\":6392,\"journal\":{\"name\":\"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2012.6392655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2012.6392655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

用局部极小值可以有效地表示巨大而崎岖的蛋白质能量面。跳跃盆地框架,其中结构扰动之后是能量最小化,特别适合于获得这种粗粒度表示。对于小系统而言,盆地跳变在寻找低能量最小值和获得靠近原生构造的构象方面都是有效的。对于大型系统,效率会降低。我们最近的工作是通过分子片段替换来提高大型系统的效率。在本文中,我们详细研究了盆地跳跃的两个组成部分,摄动和最小化,以及它们如何协同作用来影响近本地局部极小值的采样。我们表明,控制扰动跳跃的大小与有效地引导探索接近蛋白质天然状态的构象的能力有关。在最小化中,我们展示了一个简单的贪婪搜索和基于蒙特卡罗的最小化一样有效。最后,我们证明了基于Pareto锋的进化启发方法在减少采样的局部最小值集合方面特别有效,并获得了探测能量表面的更简单表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient basin hopping in the protein energy surface
The vast and rugged protein energy surface can be effectively represented in terms of local minima. The basin-hopping framework, where a structural perturbation is followed by an energy minimization, is particularly suited to obtaining this coarse-grained representation. Basin hopping is effective for small systems both in locating lower-energy minima and obtaining conformations near the native structure. The efficiency decreases for large systems. Our recent work improves efficiency on large systems through molecular fragment replacement. In this paper, we conduct a detailed investigation of two components in basin hopping, perturbation and minimization, and how they work in concert to affect the sampling of near-native local minima. We show that controlling the magnitude of perturbation jumps is related to the ability to effectively steer the exploration towards conformations near the protein native state. In minimization, we show that a simple greedy search is just as effective as Metropolis Monte Carlo-based minimization. Finally, we show that an evolutionary-inspired approach based on the Pareto front is particularly effective in reducing the ensemble of sampled local minima and obtains a simpler representation of the probed energy surface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards comprehensive longitudinal healthcare data capture On the repetitive collection indexing problem Sampling low-energy protein-protein configurations with basin hopping The effect of measurement approach and noise level on gene selection stability Clinical research progress of treatment over Tourette syndrome with acup-mox therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1