评估问题的知识依赖性

Hyeongdon Moon, Yoonseok Yang, Jamin Shin, Hangyeol Yu, Seunghyun Lee, Myeongho Jeong, Juneyoung Park, Minsam Kim, Seungtaek Choi
{"title":"评估问题的知识依赖性","authors":"Hyeongdon Moon, Yoonseok Yang, Jamin Shin, Hangyeol Yu, Seunghyun Lee, Myeongho Jeong, Juneyoung Park, Minsam Kim, Seungtaek Choi","doi":"10.48550/arXiv.2211.11902","DOIUrl":null,"url":null,"abstract":"The automatic generation of Multiple Choice Questions (MCQ) has the potential to reduce the time educators spend on student assessment significantly. However, existing evaluation metrics for MCQ generation, such as BLEU, ROUGE, and METEOR, focus on the n-gram based similarity of the generated MCQ to the gold sample in the dataset and disregard their educational value.They fail to evaluate the MCQ’s ability to assess the student’s knowledge of the corresponding target fact. To tackle this issue, we propose a novel automatic evaluation metric, coined Knowledge Dependent Answerability (KDA), which measures the MCQ’s answerability given knowledge of the target fact. Specifically, we first show how to measure KDA based on student responses from a human survey.Then, we propose two automatic evaluation metrics, KDA_disc and KDA_cont, that approximate KDA by leveraging pre-trained language models to imitate students’ problem-solving behavior.Through our human studies, we show that KDA_disc and KDA_soft have strong correlations with both (1) KDA and (2) usability in an actual classroom setting, labeled by experts. Furthermore, when combined with n-gram based similarity metrics, KDA_disc and KDA_cont are shown to have a strong predictive power for various expert-labeled MCQ quality measures.","PeriodicalId":74540,"journal":{"name":"Proceedings of the Conference on Empirical Methods in Natural Language Processing. Conference on Empirical Methods in Natural Language Processing","volume":"19 1","pages":"10512-10526"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evaluating the Knowledge Dependency of Questions\",\"authors\":\"Hyeongdon Moon, Yoonseok Yang, Jamin Shin, Hangyeol Yu, Seunghyun Lee, Myeongho Jeong, Juneyoung Park, Minsam Kim, Seungtaek Choi\",\"doi\":\"10.48550/arXiv.2211.11902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The automatic generation of Multiple Choice Questions (MCQ) has the potential to reduce the time educators spend on student assessment significantly. However, existing evaluation metrics for MCQ generation, such as BLEU, ROUGE, and METEOR, focus on the n-gram based similarity of the generated MCQ to the gold sample in the dataset and disregard their educational value.They fail to evaluate the MCQ’s ability to assess the student’s knowledge of the corresponding target fact. To tackle this issue, we propose a novel automatic evaluation metric, coined Knowledge Dependent Answerability (KDA), which measures the MCQ’s answerability given knowledge of the target fact. Specifically, we first show how to measure KDA based on student responses from a human survey.Then, we propose two automatic evaluation metrics, KDA_disc and KDA_cont, that approximate KDA by leveraging pre-trained language models to imitate students’ problem-solving behavior.Through our human studies, we show that KDA_disc and KDA_soft have strong correlations with both (1) KDA and (2) usability in an actual classroom setting, labeled by experts. Furthermore, when combined with n-gram based similarity metrics, KDA_disc and KDA_cont are shown to have a strong predictive power for various expert-labeled MCQ quality measures.\",\"PeriodicalId\":74540,\"journal\":{\"name\":\"Proceedings of the Conference on Empirical Methods in Natural Language Processing. Conference on Empirical Methods in Natural Language Processing\",\"volume\":\"19 1\",\"pages\":\"10512-10526\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Conference on Empirical Methods in Natural Language Processing. Conference on Empirical Methods in Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2211.11902\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Conference on Empirical Methods in Natural Language Processing. Conference on Empirical Methods in Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.11902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

多项选择题(MCQ)的自动生成有可能大大减少教育工作者花在学生评估上的时间。然而,现有的MCQ生成评估指标,如BLEU、ROUGE和METEOR,关注的是生成的MCQ与数据集中的黄金样本基于n图的相似性,而忽略了它们的教育价值。他们没有评估MCQ评估学生对相应目标事实的知识的能力。为了解决这个问题,我们提出了一种新的自动评估指标,即知识依赖的可答性(KDA),它测量MCQ在给定目标事实知识的情况下的可答性。具体来说,我们首先展示了如何根据学生对人类调查的反应来测量KDA。然后,我们提出了两个自动评估指标,KDA_disc和KDA_cont,它们通过利用预训练的语言模型来模仿学生的问题解决行为来近似KDA。通过我们的人体研究,我们表明KDA_disc和KDA_soft在专家标记的实际课堂环境中与(1)KDA和(2)可用性具有很强的相关性。此外,当与基于n-gram的相似性度量相结合时,KDA_disc和KDA_cont对各种专家标记的MCQ质量度量具有很强的预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluating the Knowledge Dependency of Questions
The automatic generation of Multiple Choice Questions (MCQ) has the potential to reduce the time educators spend on student assessment significantly. However, existing evaluation metrics for MCQ generation, such as BLEU, ROUGE, and METEOR, focus on the n-gram based similarity of the generated MCQ to the gold sample in the dataset and disregard their educational value.They fail to evaluate the MCQ’s ability to assess the student’s knowledge of the corresponding target fact. To tackle this issue, we propose a novel automatic evaluation metric, coined Knowledge Dependent Answerability (KDA), which measures the MCQ’s answerability given knowledge of the target fact. Specifically, we first show how to measure KDA based on student responses from a human survey.Then, we propose two automatic evaluation metrics, KDA_disc and KDA_cont, that approximate KDA by leveraging pre-trained language models to imitate students’ problem-solving behavior.Through our human studies, we show that KDA_disc and KDA_soft have strong correlations with both (1) KDA and (2) usability in an actual classroom setting, labeled by experts. Furthermore, when combined with n-gram based similarity metrics, KDA_disc and KDA_cont are shown to have a strong predictive power for various expert-labeled MCQ quality measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EHRAgent: Code Empowers Large Language Models for Few-shot Complex Tabular Reasoning on Electronic Health Records. Two Directions for Clinical Data Generation with Large Language Models: Data-to-Label and Label-to-Data. Hierarchical Pretraining on Multimodal Electronic Health Records. An Integrative Survey on Mental Health Conversational Agents to Bridge Computer Science and Medical Perspectives. A Comprehensive Evaluation of Biomedical Entity Linking Models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1