{"title":"端到端顺序推荐的多利益多样化","authors":"Wanyu Chen, Pengjie Ren, Fei Cai, Fei Sun, Maarten de Rijke","doi":"10.1145/3475768","DOIUrl":null,"url":null,"abstract":"Sequential recommenders capture dynamic aspects of users’ interests by modeling sequential behavior. Previous studies on sequential recommendations mostly aim to identify users’ main recent interests to optimize the recommendation accuracy; they often neglect the fact that users display multiple interests over extended periods of time, which could be used to improve the diversity of lists of recommended items. Existing work related to diversified recommendation typically assumes that users’ preferences are static and depend on post-processing the candidate list of recommended items. However, those conditions are not suitable when applied to sequential recommendations. We tackle sequential recommendation as a list generation process and propose a unified approach to take accuracy as well as diversity into consideration, called multi-interest, diversified, sequential recommendation. Particularly, an implicit interest mining module is first used to mine users’ multiple interests, which are reflected in users’ sequential behavior. Then an interest-aware, diversity promoting decoder is designed to produce recommendations that cover those interests. For training, we introduce an interest-aware, diversity promoting loss function that can supervise the model to learn to recommend accurate as well as diversified items. We conduct comprehensive experiments on four public datasets and the results show that our proposal outperforms state-of-the-art methods regarding diversity while producing comparable or better accuracy for sequential recommendation.","PeriodicalId":6934,"journal":{"name":"ACM Transactions on Information Systems (TOIS)","volume":"56 1","pages":"1 - 30"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Multi-interest Diversification for End-to-end Sequential Recommendation\",\"authors\":\"Wanyu Chen, Pengjie Ren, Fei Cai, Fei Sun, Maarten de Rijke\",\"doi\":\"10.1145/3475768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sequential recommenders capture dynamic aspects of users’ interests by modeling sequential behavior. Previous studies on sequential recommendations mostly aim to identify users’ main recent interests to optimize the recommendation accuracy; they often neglect the fact that users display multiple interests over extended periods of time, which could be used to improve the diversity of lists of recommended items. Existing work related to diversified recommendation typically assumes that users’ preferences are static and depend on post-processing the candidate list of recommended items. However, those conditions are not suitable when applied to sequential recommendations. We tackle sequential recommendation as a list generation process and propose a unified approach to take accuracy as well as diversity into consideration, called multi-interest, diversified, sequential recommendation. Particularly, an implicit interest mining module is first used to mine users’ multiple interests, which are reflected in users’ sequential behavior. Then an interest-aware, diversity promoting decoder is designed to produce recommendations that cover those interests. For training, we introduce an interest-aware, diversity promoting loss function that can supervise the model to learn to recommend accurate as well as diversified items. We conduct comprehensive experiments on four public datasets and the results show that our proposal outperforms state-of-the-art methods regarding diversity while producing comparable or better accuracy for sequential recommendation.\",\"PeriodicalId\":6934,\"journal\":{\"name\":\"ACM Transactions on Information Systems (TOIS)\",\"volume\":\"56 1\",\"pages\":\"1 - 30\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Information Systems (TOIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3475768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems (TOIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3475768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-interest Diversification for End-to-end Sequential Recommendation
Sequential recommenders capture dynamic aspects of users’ interests by modeling sequential behavior. Previous studies on sequential recommendations mostly aim to identify users’ main recent interests to optimize the recommendation accuracy; they often neglect the fact that users display multiple interests over extended periods of time, which could be used to improve the diversity of lists of recommended items. Existing work related to diversified recommendation typically assumes that users’ preferences are static and depend on post-processing the candidate list of recommended items. However, those conditions are not suitable when applied to sequential recommendations. We tackle sequential recommendation as a list generation process and propose a unified approach to take accuracy as well as diversity into consideration, called multi-interest, diversified, sequential recommendation. Particularly, an implicit interest mining module is first used to mine users’ multiple interests, which are reflected in users’ sequential behavior. Then an interest-aware, diversity promoting decoder is designed to produce recommendations that cover those interests. For training, we introduce an interest-aware, diversity promoting loss function that can supervise the model to learn to recommend accurate as well as diversified items. We conduct comprehensive experiments on four public datasets and the results show that our proposal outperforms state-of-the-art methods regarding diversity while producing comparable or better accuracy for sequential recommendation.